PHYS222: Difference between revisions
m Added link to "The Asymptotic Bode Diagram: Derivation of Approximations" |
mNo edit summary |
||
Line 18: | Line 18: | ||
=== Prosessteknologi === | === Prosessteknologi === | ||
* [http://microscopy.fsu.edu/electromag/java/transistor/index.html Explore how an individual Field Effect (FET) transistor is fabricated on a silicon wafer simultaneously with millions of its neighbours] | * [http://microscopy.fsu.edu/electromag/java/transistor/index.html Explore how an individual Field Effect (FET) transistor is fabricated on a silicon wafer simultaneously with millions of its neighbours] | ||
* [http://spectrum.ieee.org/semiconductors/devices/transistor-wars Transistor Wars - Rival architectures face off in a bid to keep Moore's Law alive] | |||
=== Logical effort === | === Logical effort === |
Revision as of 12:29, 10 November 2011
Fagressurser for bruk i PHYS222 og PHYS223
Fagbøker
Noise
Halvlederfysikk
- Hyperphysics om halvledere
- Semiconductor Simulation Applets
- Semiconductor Glossary
- Elementary Physics of P-N Junctions
Prosessteknologi
- Explore how an individual Field Effect (FET) transistor is fabricated on a silicon wafer simultaneously with millions of its neighbours
- Transistor Wars - Rival architectures face off in a bid to keep Moore's Law alive
Logical effort
Matlab/Maple
Vi kan bruke Matlab/Maple for å løse ligninger og plotte resultater. Her er noen eksempler:
- Symbolsk løsning av nodeligninger for en source-følger
- Asymptotic Bode Diagram: Derivation of Approximations
Kretssimulering
AIM-Spice
AIM-Spice is a new version of SPICE running under the Microsoft Windows and Linux operating systems. AIM-Spice for Windows is capable of displaying graphically the results of a simulation in progress, a feature that allows the operator to terminate a run based on an instant information on intermediate simulation results.
SPICE is the most commonly used analogue circuit simulator today and is enormously important for the electronics industry. SPICE is a general purpose analogue simulator which contains models for most circuit elements and can handle complex non-linear circuits. The simulator can calculate dc operating points, perform transient analyses, locate poles and zeros for different kinds of transfer functions, find the small signal frequency response, small signal transfer functions, small signal sensitivities, and perform Fourier, noise, and distortion analyses.
Download a free student version
LTspice IV
LTspice IV is a high performance Spice III simulator, schematic capture and waveform viewer with enhancements and models for easing the simulation of switching regulators. Included in this download are Spice, Macro Models for 80% of Linear Technology's switching regulators, over 200 op amp models, as well as resistors, transistors and MOSFET models.