Symbolsk løsning av nodeligninger med Matlab
From ift
Using Kirchoff's current law (KCL) on a source follower configuration to find Vout as a function of Vin
% Using Kirchoff's current law (KCL) on a source follower configuration % to find Vo as a function of Vin % Only Cgd is considered (Zc) % Kjetil Ullaland syms s Vin Vo Vgs Zc gm Rl Rs R eq1='(Vo-Vgs)/(R+Zc)+gm*Vgs+Vo/Rl=0'; eq2='(Vgs-Vo)/(R+Zc)+(Vgs-Vin)/Rs=0'; eq1=subs(eq1,Zc,'1/(s*C)'); eq2=subs(eq2,Zc,'1/(s*C)'); disp('KCL for circuit node 1:'); pretty(eq1); disp('KCL for circuit doc prettynode 2:'); pretty(eq2); disp('Solve for Vgs'); vgs_solved=solve(eq2,Vgs); pretty(simplify(vgs_solved)); disp('Solve for Vo(vin)'); eq3=subs(eq1,Vgs,vgs_solved); Vo_solved=solve(eq3,Vo); pretty(simplify(Vo_solved/Vin))
Using Kirchoff's current law (KCL) on single transistor stage, fig. 9.18 to find Vo as a function of Is
% Using Kirchoff's current law (KCL) on single transistor stage, fig. 9.18 % to find Vo as a function of Is % Kjetil Ullaland, 2015 syms Vo V1 s gm R1 R2 C C1 C2 Is Zc Rz; %% With feedforward capacitor eq1=sym('(Vo-V1)/Zc+gm*V1+Vo/R2+Vo*s*C2=0'); eq2=sym('(V1-Vo)/Zc+V1*s*C1+V1/R1+Is=0'); eq1=subs(eq1,Zc,'1/(s*C)'); eq2=subs(eq2,Zc,'1/(s*C)'); solV1=solve(eq2,V1); eq3=subs(eq1,V1,solV1); SolVo=simplify(solve(eq3,[Vo])); disp('With capacitor only in feedforward loop'); pretty(simplify(SolVo/Is)); %% With series resistor and capacitor in feedforward loop eq1=sym('(Vo-V1)/(Zc+Rz)+gm*V1+Vo/R2+Vo*s*C2=0'); eq2=sym('(V1-Vo)/(Zc+Rz)+V1*s*C1+V1/R1+Is=0'); eq1=subs(eq1,Zc,'1/(s*C)'); eq2=subs(eq2,Zc,'1/(s*C)'); solV1=solve(eq2,V1); eq3=simplify(subs(eq1,V1,solV1)); SolVo=solve(eq3,[Vo]); disp('With series resistor and capacitor in feedforward loop'); pretty(simplify(SolVo/Is));