Symbolsk løsning av nodeligninger med Matlab: Difference between revisions
From ift
mNo edit summary |
Added single transistor stage, fig. 9.18 |
||
Line 21: | Line 21: | ||
Vout_solved=solve(ligning3,'Vout'); | Vout_solved=solve(ligning3,'Vout'); | ||
pretty(simplify(Vout_solved)) | pretty(simplify(Vout_solved)) | ||
</pre> | |||
<pre> | |||
% Using Kirchoff's current law (KCL) on single transistor stage, fig. 9.18 | |||
% to find Vo as a function of Is | |||
% Kjetil Ullaland, 2015 | |||
syms Vo V1 s gm R1 R2 C C1 C2 Is Zc Rz; | |||
eq1=sym('(Vo-V1)/(Zc+Rz)+gm*V1+Vo/R2+Vo*s*C2=0'); | |||
eq2=sym('(V1-Vo)/(Zc+Rz)+V1*s*C1+V1/R1+Is=0'); | |||
eq1=subs(eq1,Zc,'1/(s*C)'); | |||
eq2=subs(eq2,Zc,'1/(s*C)'); | |||
solV1=solve(eq2,V1); | |||
eq3=simplify(subs(eq1,V1,solV1)); | |||
SolVo=simplify(solve(eq3,[Vo])); | |||
pretty(simplify(SolVo/Is)); | |||
</pre> | </pre> |
Revision as of 07:32, 9 October 2015
% Using Kirchoff's current law (KCL) on a source follower configuration % to find Vout as a function of Vin % Only Cgd is considered (Zc) % Kjetil Ullaland ligning1='(Vout-Vgs)/Zc+gm*Vgs+Vout/Rl=0'; ligning2='(Vgs-Vout)/Zc+(Vgs-Vin)/Rs=0'; ligning1=subs(ligning1,'1/(j*w*C)','Zc'); ligning2=subs(ligning2,'1/(j*w*C)','Zc'); pretty(ligning1); pretty(ligning2); disp('Solve for Vgs'); vgs_solved=solve(ligning2,'Vgs'); pretty(simplify(vgs_solved)); disp('Solve for Vout(vin)'); ligning3=subs(ligning1,vgs_solved,'Vgs'); Vout_solved=solve(ligning3,'Vout'); pretty(simplify(Vout_solved))
% Using Kirchoff's current law (KCL) on single transistor stage, fig. 9.18 % to find Vo as a function of Is % Kjetil Ullaland, 2015 syms Vo V1 s gm R1 R2 C C1 C2 Is Zc Rz; eq1=sym('(Vo-V1)/(Zc+Rz)+gm*V1+Vo/R2+Vo*s*C2=0'); eq2=sym('(V1-Vo)/(Zc+Rz)+V1*s*C1+V1/R1+Is=0'); eq1=subs(eq1,Zc,'1/(s*C)'); eq2=subs(eq2,Zc,'1/(s*C)'); solV1=solve(eq2,V1); eq3=simplify(subs(eq1,V1,solV1)); SolVo=simplify(solve(eq3,[Vo])); pretty(simplify(SolVo/Is));