Symbolsk løsning av nodeligninger med Matlab: Difference between revisions

From ift
mNo edit summary
m Added calculation for all capacitors
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
% Using Kirchoff's current law (KCL) on a source follower configuration
% Using Kirchoff's current law (KCL) on a source follower configuration
% to find Vo as a function of Vin
% to find Vo as a function of Vin
% Only Cgd is considered (Zc)
% Kjetil Ullaland, 2020
% Kjetil Ullaland


syms s Vin Vo Vgs Zc gm Rl Rs R
syms s Cdg Cgs Cds Vin Vo Vgs Zc gm Rl Rs R Av Avo


eq1='(Vo-Vgs)/(R+Zc)+gm*Vgs+Vo/Rl=0';
%%
eq2='(Vgs-Vo)/(R+Zc)+(Vgs-Vin)/Rs=0';
disp('Only Cgd with series resistor is considered (Zc)')
eq1=subs(eq1,Zc,'1/(s*C)');
 
eq2=subs(eq2,Zc,'1/(s*C)');
eq1=(Vo-Vgs)/(R+Zc)+gm*Vgs+Vo/Rl == 0;
eq2=(Vgs-Vo)/(R+Zc)+(Vgs-Vin)/Rs == 0;
eq1=subs(eq1,Zc,1/(s*Cdg));
eq2=subs(eq2,Zc,1/(s*Cdg));
disp('KCL for circuit node 1:');
pretty(eq1);
disp('KCL for circuit node 2:');
pretty(eq2);
 
disp('Solve for Vo and Vin and calculate Av (Vo/Vin):');
solved=solve(eq1,eq2,Vo,Vin);
Av=solved.Vo/solved.Vin;
pretty(simplify(Av));
 
pretty(subs(Av,Rl*gm,Avo));
%%
disp('All MOST capasitors are considered')
 
syms s Cdg Cgs Cds Vin Vo Vgs gm Rl Rs Av Avo
 
eq1=(Vo-Vgs)*s*Cdg + gm*Vgs + Vo/Rl + Vo*s*Cds == 0;
eq2=(Vgs-Vin)/Rs + Vgs*s*Cgs + (Vgs-Vo)*s*Cdg == 0;
disp('KCL for circuit node 1:');
disp('KCL for circuit node 1:');
pretty(eq1);
pretty(eq1);
disp('KCL for circuit doc prettynode 2:');
disp('KCL for circuit node 2:');
pretty(eq2);
pretty(eq2);


disp('Solve for Vgs');
disp('Solve for Vo and Vin and calculate Av (Vo/Vin):');
vgs_solved=solve(eq2,Vgs);
solved=solve(eq1,eq2,Vo,Vin);
pretty(simplify(vgs_solved));
Av=solved.Vo/solved.Vin;
pretty(simplify(Av));


disp('Solve for Vo(vin)');
pretty(subs(Av,Rl*gm,Avo));
eq3=subs(eq1,Vgs,vgs_solved);
Vo_solved=solve(eq3,Vo);
pretty(simplify(Vo_solved/Vin))
</pre>
</pre>


Line 31: Line 49:
% Using Kirchoff's current law (KCL) on single transistor stage, fig. 9.18
% Using Kirchoff's current law (KCL) on single transistor stage, fig. 9.18
% to find Vo as a function of Is
% to find Vo as a function of Is
% Kjetil Ullaland, 2015
% Kjetil Ullaland, 2020


syms Vo V1 s gm R1 R2 C C1 C2 Is Zc Rz;
syms Vo V1 s gm R1 R2 C C1 C2 Is Zc Rz;


%% With feedforward capacitor
%% With feedforward capacitor
eq1=sym('(Vo-V1)/Zc+gm*V1+Vo/R2+Vo*s*C2=0');
eq1=(Vo-V1)/Zc+gm*V1+Vo/R2+Vo*s*C2==0;
eq2=sym('(V1-Vo)/Zc+V1*s*C1+V1/R1+Is=0');
eq2=(V1-Vo)/Zc+V1*s*C1+V1/R1+Is==0;
eq1=subs(eq1,Zc,'1/(s*C)');
eq1=subs(eq1,Zc,1/(s*C));
eq2=subs(eq2,Zc,'1/(s*C)');
eq2=subs(eq2,Zc,1/(s*C));


solV1=solve(eq2,V1);
disp('Solve for Vo and V1 and calculate Vo/Is with capacitor only in feedforward loop');
eq3=subs(eq1,V1,solV1);
solved=solve(eq1,eq2,Vo,Is);
SolVo=simplify(solve(eq3,[Vo]));
VoOnIs=solved.Vo/solved.Is;
disp('With capacitor only in feedforward loop');
pretty(simplify(VoOnIs));
pretty(simplify(SolVo/Is));


%% With series resistor and capacitor in feedforward loop
%% With series resistor and capacitor in feedforward loop
eq1=sym('(Vo-V1)/(Zc+Rz)+gm*V1+Vo/R2+Vo*s*C2=0');
eq1=(Vo-V1)/(Zc+Rz)+gm*V1+Vo/R2+Vo*s*C2==0;
eq2=sym('(V1-Vo)/(Zc+Rz)+V1*s*C1+V1/R1+Is=0');
eq2=(V1-Vo)/(Zc+Rz)+V1*s*C1+V1/R1+Is==0;
eq1=subs(eq1,Zc,'1/(s*C)');
eq1=subs(eq1,Zc,1/(s*C));
eq2=subs(eq2,Zc,'1/(s*C)');
eq2=subs(eq2,Zc,1/(s*C));


solV1=solve(eq2,V1);
disp('Solve for Vo and V1 and calculate Vo/Is with resistor and capacitor in feedforward loop');
eq3=simplify(subs(eq1,V1,solV1));
solved=solve(eq1,eq2,Vo,Is);
SolVo=solve(eq3,[Vo]);
VoOnIs=solved.Vo/solved.Is;
disp('With series resistor and capacitor in feedforward loop');
pretty(simplify(VoOnIs));
pretty(simplify(SolVo/Is));
</pre>
</pre>

Latest revision as of 11:39, 23 September 2020

Using Kirchoff's current law (KCL) on a source follower configuration to find Vout as a function of Vin

% Using Kirchoff's current law (KCL) on a source follower configuration
% to find Vo as a function of Vin
% Kjetil Ullaland, 2020

syms s Cdg Cgs Cds Vin Vo Vgs Zc gm Rl Rs R Av Avo

%%
disp('Only Cgd with series resistor is considered (Zc)')

eq1=(Vo-Vgs)/(R+Zc)+gm*Vgs+Vo/Rl == 0;
eq2=(Vgs-Vo)/(R+Zc)+(Vgs-Vin)/Rs == 0;
eq1=subs(eq1,Zc,1/(s*Cdg));
eq2=subs(eq2,Zc,1/(s*Cdg));
disp('KCL for circuit node 1:');
pretty(eq1);
disp('KCL for circuit node 2:');
pretty(eq2);

disp('Solve for Vo and Vin and calculate Av (Vo/Vin):');
solved=solve(eq1,eq2,Vo,Vin);
Av=solved.Vo/solved.Vin;
pretty(simplify(Av));

pretty(subs(Av,Rl*gm,Avo));
%%
disp('All MOST capasitors are considered')

syms s Cdg Cgs Cds Vin Vo Vgs gm Rl Rs Av Avo

eq1=(Vo-Vgs)*s*Cdg + gm*Vgs + Vo/Rl + Vo*s*Cds == 0;
eq2=(Vgs-Vin)/Rs + Vgs*s*Cgs + (Vgs-Vo)*s*Cdg == 0;
disp('KCL for circuit node 1:');
pretty(eq1);
disp('KCL for circuit node 2:');
pretty(eq2);

disp('Solve for Vo and Vin and calculate Av (Vo/Vin):');
solved=solve(eq1,eq2,Vo,Vin);
Av=solved.Vo/solved.Vin;
pretty(simplify(Av));

pretty(subs(Av,Rl*gm,Avo));

Using Kirchoff's current law (KCL) on single transistor stage, fig. 9.18 to find Vo as a function of Is

% Using Kirchoff's current law (KCL) on single transistor stage, fig. 9.18
% to find Vo as a function of Is
% Kjetil Ullaland, 2020

syms Vo V1 s gm R1 R2 C C1 C2 Is Zc Rz;

%% With feedforward capacitor
eq1=(Vo-V1)/Zc+gm*V1+Vo/R2+Vo*s*C2==0;
eq2=(V1-Vo)/Zc+V1*s*C1+V1/R1+Is==0;
eq1=subs(eq1,Zc,1/(s*C));
eq2=subs(eq2,Zc,1/(s*C));

disp('Solve for Vo and V1 and calculate Vo/Is with capacitor only in feedforward loop');
solved=solve(eq1,eq2,Vo,Is);
VoOnIs=solved.Vo/solved.Is;
pretty(simplify(VoOnIs));

%% With series resistor and capacitor in feedforward loop
eq1=(Vo-V1)/(Zc+Rz)+gm*V1+Vo/R2+Vo*s*C2==0;
eq2=(V1-Vo)/(Zc+Rz)+V1*s*C1+V1/R1+Is==0;
eq1=subs(eq1,Zc,1/(s*C));
eq2=subs(eq2,Zc,1/(s*C));

disp('Solve for Vo and V1 and calculate Vo/Is with resistor and capacitor in feedforward loop');
solved=solve(eq1,eq2,Vo,Is);
VoOnIs=solved.Vo/solved.Is;
pretty(simplify(VoOnIs));