
ATLAS COMPUTING
TUTORIAL

Thomas Burgess, September 2009

This is a tutorial not a talk.
If you just listen you will not learn.
Try these things out your self.
Ask questions.
Use the tutorial when you get stuck in the future

onsdag, 2009 september 09

TUTORIAL OUTLINE
✴Accounts and machines
✴Linux shell tutorial - bash
✴Writing analysis code - some ROOT / C++
✴Safe and common code storage SVN

onsdag, 2009 september 09

CERN

Accounts you may need

lxplus

lxbatch
desktop

machines
GRID

Mailing
lists

twiki

UiB
klientdrift
desktop

machineswiki

wireless

Fimm

Bergen
computing cluster

IFT
desktop

machines

local
resources

Later tutorial You probably have it!

Talk to your professor Mail Magne

onsdag, 2009 september 09

Some of our computers
IFT account machines

atlasXX.ift.uib.no - desktop machines (Scientific Linux 4)

portal1.ift.uib.no & portal2.ift.uib.no

external login node for iftsub machines

UiB IT machines

iftsubXXX.klientdrift.uib.no - desktop machines (Fedora11)

CERN account machines

lxplus.cern.ch - linux login nodes at CERN - apply (Scientific Linux 4)

fimm account machines

fimm.bccs.uib.no - cluster login node at parallab (CENTOS5)

onsdag, 2009 september 09

LINUX SHELL TUTORIAL
I prefer the bash shell, if you don’t have it by default, type
bash - sys admin can change your default to bash

When you open a terminal window and type in commands
you are using the shell

For remote machines log in to the shell by ssh is the only
convenient way to access the machine!

Basic understanding of the shell is very helpful in
becoming an efficient linux user

Bash is also the default shell on Mac OSX

On windows machines you can use cygwin if you would like
a proper shell

onsdag, 2009 september 09

Getting a shell
To open a shell find the command line or terminal icon,
often called: kterm, gnome-terminal, xterm, iTerm,
Terminal

To open a shell on a remote machine use open a
terminal and use ssh

ssh username@hostname
ssh -X username@hostname
(if you require support for graphic windows)

onsdag, 2009 september 09

LINUX SHELL
FILE TOOLS

man, info, whatis, mkdir, cp, scp, mv, rm,
rmdir, chown, chmod, gzip, bzip2, tar, du, df

onsdag, 2009 september 09

Getting help
To get manual page

man top

To get info page (sometimes better)

info ssh

To get short help

whatis ls

To get help on a shell built in

help for

Then there is google...
onsdag, 2009 september 09

mkdir - create a directory

mkdir tutorial
creates the directory “tutorial”, fails if directory exists
mkdir -p tutorial/dir1/dir2
creates all subdirectories and parent directories, doesn’t
fail if directory exist

onsdag, 2009 september 09

ls - list directory contents
ls
lists files in current directory
ls dir1/*.txt
lists all files ending in “.txt” in under directory “dir1”
ls {info,data}_{1,2,3}*
lists all files beginning with “info” or “data” follwed by a ”_” and
the number 1 2 or 3
ls -lsh
lists in long format, sorted by size and human readable sizes
ls -ltr
lists in long format, sorted by time, reverse order

onsdag, 2009 september 09

cp & mv - copy move and rename
cp file1 file2
copy “file1” to “file2”, if “file2” exists it is overwritten
cp -r file1 dir1/ dir2
copy “file1” and directory “dir1” recursively to directory “dir2” -
when copying several files the last must allways be a directory!
cp -p file1 file2
copy preserving file mode, timestamps and ownership
scp file1 username@host:directory/
copy file1 to a remote machine using secure copy
mv file1 file2
move “file1” to “file2”, if “file2” exists it will be overwritten, if
not “file1” will be renamed “file2”

onsdag, 2009 september 09

rm & rmdir - removing things

rm file1 file2
remove “file1” and “file2”
rm -i *
remove all files - but ask for each file
rm -rf dir1/
remove directory recursively and don’t ask about anything (use
with care)
rmdir dir1
remove an empty directory “dir1”

onsdag, 2009 september 09

chown & chmod - manage
ownership and access rights

chmod a+rw file1 file2
allow everyone to read and write to “file1” and “file2”
chmod -R go-rw dir
do not allow other users to read and write anything inside “dir”
chomod ug+x script.sh
allow you and group memebers to excecute “script.sh”
chown -R tburgess:atlasuib /work/atlas
set ownership of everything in directory to user tburgess and
group atlasuib

onsdag, 2009 september 09

gzip, bzip & tar - compress &
archive files

gzip file1
compress “file1” to “file1.gz”
bzip2 file1
compress “file1” to “file2.bz2”
tar cfvj archive.tar.bz2 directory
compress directory to file “archive.tar.bz2”
tar xfvj archive.tar.bz2
uncompress archive
! If you want to use gzip instead, change j to z and bz2 to gz
! gzip is faster, bzip2 gives smaller files

onsdag, 2009 september 09

du & df - disk usage
du file1
print disk usage of fileI
du -s dir
print summary of diskusage for directory
du -hs *
print summary of diskusage in human readable sizes for all files
df
print summary for mounted disks on the system
df -h /media/usb
print summary in human readable sizes for drive /media/usb

onsdag, 2009 september 09

SYSTEM INFORMATION
AND JOB CONTROL

whoami, groups, uname, hostname, top,
date, pwd, jobs, fg, bg, kill, killall, ps

onsdag, 2009 september 09

Some system information
To print who is logged in, who you are, what groups you belong
to, try this

whoami
groups
finger `whoami`
(note the `` which executed whoami before finger)

To get some info about the machine try this

w (or who)
hostname
uname -a
hostinfo (on some systems)
cat /etc/redhat-release (on some linux systems)
top (shows most active processes)

onsdag, 2009 september 09

Jobs and processes
Start emacs and top sessions in terminal with &

emacs -nw &
top &

The jobs are now in the background, to list them use jobs,

To put the last job in the foreground use fg, if used with option %N (where N
is the id from jobs) you can foreground any job

control+z stops a foreground job, bg puts it in background, useful for non
interactive jobs that you want to keep running

To keep the job running even when you log off the machine use nohup
command & (a log will be saved to nohup.out)

To kill a job use kill %N, there is an numeric option -9 to kill ungracefully

To list all your running processes use ps xu, to kill one of them use kill psid, to
kill all of one process use killall processname

onsdag, 2009 september 09

SHELL SCRIPTS
Environment variables, often used utilities:
(echo, cat, wc, grep, sed), tests and loops

onsdag, 2009 september 09

Variables
Variables in bash can be set as followed

variable=value
export variable=value
(export makes it visible outside the script)

Variables are reffered to by putting a $ in front of its name (optional in
brackets which often is useful ${variable})

n=Thomas; s=Burgess; export myname=${n}${s}
(semi colon is used to put several commands on the same line)

Use “${n} ${s}” to make strings with spaces (otherwise the variable will
only be ${n})

If you use ‘${n} ${s}’ the variable names will not be printed. To print
special characters use “thomas\” burgess\” \$”.

If you use `command` the command will be executed and the result will
be in the variable mydate=`date`

onsdag, 2009 september 09

Some special variables
$HOME - current users home directory (often also ~)

$USER - current username (also username command)

$HOSTNAME - name of host (also hostname command)

$PWD - working directory (also pwd command)

$PATH - colon separated list used to search for executables

$LD_LIBRARY_PATH - colon separated list used to search for dynamic
libraries

$SHELL - name of shell (often bash or tcsh)

$TERM - name of terminal type (often xterm)

$RANDOM - get a random number

$#, $0, $1-9 - number of command line arguments, name of script, argument 1 to
9

onsdag, 2009 september 09

Shell Scripts
A bash script is a text file with several lines of
commands. Lines beginning with # are comments. The
first line should have a special comment #!/bin/bash

Typically bash scripts are suffixed .sh (for tcsh .csh)

A script can be executed by

bash script.sh
source script.sh or . script.sh
./script.sh (if script is in current directoru and executable)
script.sh (if script.sh is in PATH and executable)

Depending on your system the script .profile or .bashrc is
run everytime you start a terminal

onsdag, 2009 september 09

Printing strings
Use echo to print strings and variables

echo “Hello World”
echo “$SHELL in $TERM on $HOSTNAME `date`”

To print to a new file use >, to append to a file use >>

echo “Hello new file”>file.txt
echo “Hello some more”>>file.txt

To print many lines

echo<<EOF
line 1
line 2
EOF

onsdag, 2009 september 09

Printing files
To print entire contents of a file to the terminal

cat file.txt
(> >> works fine here also)

To concatenate two files to one file

cat file1.txt file2.txt > file3.txt

To print many lines to a new file

cat>file.txt<<EOF
line 1
line 2
EOF

To print one page at a time use more or less (less is a better
version of more) instead

onsdag, 2009 september 09

Count, search and replace text
To search for a string use grep

grep “needle” haystack.txt
cat haystack | grep -c “needle”
(counts the number of needles in haystack, | sends output of
previous command as input to next command)

To count the number of words in a file, -w for number of words, -l
for number of lines, -c for number of charactes

wc file.txt
nlines=`cat *.txt | wc -l`

To replace part of string use sed

echo “one 2 three” | sed ‘s/2/two/’

Sed and grep are very powerful commands that can do a lot
more...

onsdag, 2009 september 09

Tests and loops
To check something use

if [$var=”one”]; then echo “1”; fi
if [-e 1.txt]; then echo “1.txt exists”; fi

To loop use

for x in {one, two, 3}; do echo $x; done
for file in `ls *.txt`; do echo $file | sed ‘s/.txt//’; done

To select from a menu use

select num in {one,two,three}; do echo $num; break; done
(break stops the selection once a choice is made)

onsdag, 2009 september 09

ROOT
How to get started making analysis code

onsdag, 2009 september 09

Setting up and starting root
Download an appropriate root from root.cern.ch

Unpack it somewhere and name the directory properly

cd /scratch; tar xfvz root-5.19.4.tar.gz; mv root root-5.19.4

Set your environment (can be in a script or in .profile / .bashrc)

export ROOTSYS=/scratch/root-5.19.4
export PATH=${ROOTSYS}/bin:PATH
export LD_LIBRARY_PATH=${ROOTSYS}/lib:LD_LIBRARY_PATH
(if using a script remember source script.sh before running)

Start root with root -l, to start a root script directly use root -l script.C, if
you want to run non interactive use root -l -q -b script.C

onsdag, 2009 september 09

Root scripts
A root macro is a textfile (usually suffixed .C) that begins with { and
ends with } with lines of root commands between. Macros are executed
with .x macro.C in the root prompt

A root function is a textfile (func.C) that declares the function void
func() { }. If filename and function name matches it can be executed like
a macro, otherwise use .L func.C and function() in the root prompt

Well written functions can be compiled for speed. Easiest way is to use
the built in compiler in root invoked by .L func.C++

It is also possible to use root from python, I’m no expert at this but
some users prefer it to C++ #include <iostream>

void hello()
{
 std::cout<< "Hello world"
<< std::endl;
}

int main()
{
 hello();
}

Script hello.C can be run with .x, .L,
compiled in root and in g++

onsdag, 2009 september 09

Making a histogram with
random data

#include “TF1.h”
#include “TH1.H”
#inclide <iostream>

void gaustest() {
TF1* f1 = new TF1("f1","1/sqrt(2*pi)*exp(-(x-5)^2/2)",0,10);
TH1* h = new TH1F("f1(x)","Gaussian test",100,0,10);
h->SetXTitle(“f1(x)”);
h->SetYTitle(“number of events”);
h->FillRandom(“f1”,5000);
h->Draw();
std::cout << "maximum = "<< h->GetMaximum() << std:: endl;
std:: cout << "max bin = " << h->GetMaximumBin() << std:: endl;
std:: cout << "max value = " << h->GetMaximumBin()*h->GetBinWidth(0) << std:: endl;
std:: cout << "Histogram mean = " << h->GetMean() << std:: endl;
std:: cout << "RMS = " << h->GetRMS() << std:: endl;
std:: cout << "Number of entries = " << h->GetEntries() << std:: endl;
h->Fit("gaus");
}

onsdag, 2009 september 09

Converting a text file to an ntuple and
plotting some data

cat>file.txt<<EOF
1 0.5 0.2
2 0.3 0.3
3 0.9 0.6
4 1.4 0.7
5 -1.0 0.8
6 4 1.3
EOF

Create an ntuple and read from file
root [0] TNtuple nt("ntuple","ntuple","i:x:y")
root [1] nt.ReadFile("file.txt")
Draw 1d histogram for i
root [2] nt.Draw("i”)
Draw lin style x as a function of i
root [3] nt.Draw("x:i”,””,”l”)
Draw box style for all x>0
root [4] nt.Draw("y:x”,”x>0”,”box”)
Draw x and y as a function of i in the same plot
root [5] nt.Draw("x:i”,””,”l”)
root [6] nt.SetLineStyle(2)
root [7] nt.Draw("y:i”,””,”same l”)
Draw x+y
root [8] nt.Draw("x+y:i”,””,”l”)

onsdag, 2009 september 09

MORE ON C++ AND ROOT
IN A LATER TUTORIAL...

onsdag, 2009 september 09

SVN - SUBVERSION
Using a version control system to

keep your source code safe!

onsdag, 2009 september 09

SVN - Subversion
Svn is used to keep files and their change history

When developing software version control can help you

Change/add/remove files while maintaining file history

Revert or compare to an older version of a file

Tag project snapshots (for example a stable release)

Branch project for parallell development

Collaborate with other developers while reducing file conflicts

Svn archives can be local, on a network or on a server.

A properly backed up server is a good way to save files for the future.

For ATLAS we have a svn server at CERN https://svnweb.cern.ch/trac/bergen

More info: SVN home - http://subversion.tigris.org | Online book - http://
svnbook.red-bean.com | CERN svn page - http://svn.web.cern.ch

onsdag, 2009 september 09

https://svnweb.cern.ch/trac/bergen
https://svnweb.cern.ch/trac/bergen
http://subversion.tigris.org
http://subversion.tigris.org
http://svnbook.red-bean.com
http://svnbook.red-bean.com
http://svnbook.red-bean.com
http://svnbook.red-bean.com
http://svn.web.cern.ch
http://svn.web.cern.ch

SVN - Making a local archive
Before starting set your svn editor in .bashrc / .profile

export SVN_EDITOR=emacs

To learn SVN the best way is to have your own archive to play with

export SVNPATH=${HOME}/mysvn
mkdir -p ${SVNPATH}
svnadmin create --fs-type fsfs ${SVNPATH}
export MYSVN="file:///${SVNPATH}"
(SVNPATH and MYSVN are only for readability)

To use the Bergen CERN svn instead of a local svn just change the
variable

MYSVN=ssh+svn://svn.cern.ch/bergen

For read only access (open for everyone to use)

MYSVN=https://svn.cern.ch/bergen

onsdag, 2009 september 09

https://svn.cern.ch/bergen
https://svn.cern.ch/bergen

SVN - adding a directory
Add a directory to your svn

svn mkdir ${MYSVN}/directory -m "Adding directory"
(note the comment that is inserted into your svn log. Without -m your
SVN_EDITOR is started and you can edit your comment there)

Rename directory

svn rename ${MYSVN}/directory ${MYSVN}/dir -m “Renaming…”

List files in your svn

svn ls ${MYSVN}

Remove a directory from you svn

svn rm ${MYSVN}/dir -m "Removing directory"

Read the revision history

svn log ${MYSVN}

onsdag, 2009 september 09

SVN - make a new project
Create a directory for your project, and put a directory trunk/
under it - this is where your files go!

svn mkdir $MYSVN/myproject -m "Creating directory for my
project"
svn mkdir $MYSVN/myproject -m "Creating trunk for my
project"

Check out the trunk of your project and change to the project
directory

svn checkout $MYSVN/myproject/trunk myproject
cd myproject
(checkout can be shortened to co)

Get project information

svn info

onsdag, 2009 september 09

SVN - Importing an existing project
Assuming you have a project with files and subdirectories

Copy your source to a new directory

mkdir -p /tmp/project/trunk
cp -r project/* /tmp/project/trunk

Use the import command

svn import /tmp/project/trunk $MYSVN -m “Initial
import”

Now check out trunk and continue developing there

svn co $MYSVN/project/trunk project-svn
(don’t continue in the original directory as this is not in svn)

onsdag, 2009 september 09

SVN - adding a file to the project
Make a new file and add it and commit it to the project

echo “Hello code” > code.txt
svn add code.txt
svn commit code.txt -m “Adding code.txt”

Modify code.txt, check the svn status, list the differences

echo “some more code” >> code.txt
svn status
svn diff code.txt

Undo any uncommitted changes to code.txt

svn revert code.txt

Change the file again and commit the changes

echo “some more code” >> code.txt
svn commit
(will open your editor for comment & commit all changes in the directory)

Use log to get revision history, then update to an older version, then update to the trunk

svn log code.txt
svn update -r 5 code.txt
svn update

onsdag, 2009 september 09

SVN - tagging a version

Create a directory for your tags, then copy the current version
of your working directory to the svn tags directory

svn mkdir $MYSVN/myproject/tags - “New directory for tags”
cd ..
svn copy myproject/ $MYSVN/myproject/tags/myproject-tag

to check the tagged version out

svn co $MYSVN/myproject/tags/myproject-tag myproj-tag
(you shouldn’t commit to the tagged version, the head/trunk is
for commits)

onsdag, 2009 september 09

THE END

onsdag, 2009 september 09

