## Search for Black Holes in Atlas work in progress

Jørn Havås Mæland

November 25, 2009

Introduction

Black Hole Production

Black Hole Decay

Black Hole analysis

Summary

- ▶ There exist two seemingly fundamental energy scales in nature. The electroweak scale  $m_{EW} \sim 10^3 GeV$  and the Planck scale  $M_{Pl} = G_N^{-1/2} \sim 10^{18} GeV$
- Models with large extra dimensions may solve the hierarchy problem
- Micro black holes are an exciting consequence of large extra dimensions

- ► ADD scenario, proposed by Nima Arkani-Hamed, Savas Dimopoulus and Gia Dvali. One assume that there exist n extra compact spatial dimensions, of size ~ R
- The extra dimensional Planck scale, is  $M_{Pl(n+4)}$
- The relationship between the 4 dimensional Planck scale (M<sub>Pl</sub>) and the extra dimensional Planck scale M<sub>Pl(4+n)</sub> can be derived by using Gauss law. Two test masses m<sub>1</sub> and m<sub>2</sub> are placed at a distance r ≪ R, the gravitational potential they feel is

$$V(r) \sim rac{m_1 m_2}{M_{Pl(4+n)}^{n+2}} rac{1}{r^{n+1}}$$
 (1)

If the two test masses was placed at a distance  $r \gg R$ , the gravitational potential changes to

$$V(r) \sim \frac{m_1 m_2}{M_{Pl(4+n)}^{n+2} R^n} \frac{1}{r}$$
 (2)

▶ By comparing, one finds the relationship between the M<sub>Pl</sub> and M<sub>Pl(4+n)</sub>.

$$M_{Pl}^2 \sim M_{Pl(4+n)}^{2+n} R^n$$
 (3)

- ► Assuming extradimensional Planck scale (M<sub>Pl(4+n)</sub>) ≈ electroweak scale
- For M<sub>Pl(4+n)</sub> = 1 TeV and n = 2, the size of R ∼ 100µm and for increasing n, R is decreasing.

- Consider two partons with a center-of-mass energy  $\sqrt{\hat{s}} = M_{BH}$  moving in opposite directions. If the impact parameter is less than the higher-dimensional Schwarzschild radius, a black hole with mass  $M_{BH}$  forms.  $(R \gg R_S)$
- The parton cross section is

$$\hat{\sigma}(M_{BH}) \approx \pi R_s^2 \tag{4}$$

- A Black Hole will decay by Hawking radiation into any type of standard model particles. (leptons, quarks photons, W, Z)
- The number of decay products is dependent on the Hawking temperature T<sub>H</sub>

$$< N > \approx \frac{M_{BH}}{2T_{H}}$$
$$= \frac{2\sqrt{\pi}}{n+1} \left(\frac{M_{BH}}{M_{Pl(4+n)}}\right)^{\frac{n+2}{n+1}} \left(\frac{8\Gamma\left(\frac{n+3}{2}\right)}{n+2}\right)^{\frac{1}{n+1}}$$
(5)

- For n = 2 and M<sub>BH</sub> = 5TeV, the black hole will on average decay to 14 particles.
- For increasing space dimensions, the number decay products are decreasing.

## Black hole properties

- Large number of high  $P_T$  final state particles
- Large  $\sum P_T$
- ► Large miss *⊭*<sub>T</sub>

► Analyze Strategy Electron  $P_T > 15 \text{ GeV}$  $|\eta| < 2.5 \text{ except for}$  $1.00 |\eta| < 1.15, 1.37 |\eta| < 1.52$ Muon  $P_T > 15 \text{ GeV}$  $|\eta| < 2.5$ 

| Photons              | Jet                    |  |  |
|----------------------|------------------------|--|--|
| $P_T > 15  { m GeV}$ | $P_T > 20 \text{ GeV}$ |  |  |
| $ \eta  < 2.5$       | $ \eta  < 2.5$         |  |  |

• Where  $\eta = -\ln(\tan(\frac{\theta}{2}))$ , where  $\theta$  is the angle form the beam axis.

| Data Set                               | Events | Cross section(pb) |
|----------------------------------------|--------|-------------------|
|                                        |        |                   |
| Signal                                 | 14 750 | 3                 |
|                                        |        |                   |
| Dijet J4 (140 GeV $< P_T < 280$ GeV)   | 72 000 | $1,5*10^{5}$      |
| Dijet J5 (280 GeV $< P_T <$ 560 GeV)   | 77 000 | $5,122 * 10^3$    |
| Dijet J6 (560 GeV $< P_T < 1120$ GeV)  | 76 000 | 120               |
| Dijet J7 (1120 GeV $< P_T < 2240$ GeV) | 76 000 | 1,075             |
| Dijet J8 ( $P_T > 2240$ GeV)           | 58 000 | $1, 1 * 10^{-3}$  |
|                                        |        |                   |

| ttbar | 65 000 | $2,05 * 10^2$ |
|-------|--------|---------------|
|-------|--------|---------------|

## Invariant mass distribution

$$p_{BH} = \sum_{i} p_{i} + (\not\!\!E_{T}, \not\!\!E_{T_{x}}, \not\!\!E_{T_{y}}, 0)$$

$$M_{BH} = \sqrt{p_{BH}^{2}}$$
(6)

Cut on the invariant mass distribution

• 
$$\sum P_T > 2.5 \text{ TeV}$$

• One lepton with  $P_T > 50 \text{GeV}$ 

► Invariant mass distribution, for black hole in n = 2 and  $M_{BH} = 5$  TeV

## Mass distrbution



12/13

- Atlas may discover ADD black holes
- But the discovery potential is dependent on extra dimensions, the mass  $M_{BH}$  and the beam energy.