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Electromagnetic Calorimeters in use today

Crystals

Photodetectors

—-

Optical Photons %

» The crystal converts one
photon into many photons in
the visible light region

» Normally: # photons « E Example: MAPD

deposited in the crystal

» Example: LYSO
PbWO, used in PHOS
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» Photomultipliers Tubes (PMT)
- High Gain (G = 10°)

- High operating voltage (few kV)
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» Photomultipliers Tubes (PMT)
- High Gain (G = 10°)

- High operating voltage (few kV)
» pin-diode

- Gain=1
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Different Photodetectors

» Photomultipliers Tubes (PMT)
- High Gain (G =~ 10°)
- High operating voltage (few kV)

» pin-diode
- Gain=1

» Avalanche PhotoDiode (APD)

- Low Gain
- Small and insensitive to magnetic
field

- Sensitive to temperature and bias
voltage
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Different Photodetectors

v

Photomultipliers Tubes (PMT)
- High Gain (G =~ 10°)
- High operating voltage (few kV)

v

pin-diode
- Gain=1

v

Avalanche PhotoDiode (APD)

- Low Gain

- Small and insensitive to magnetic
field

- Sensitive to temperature and bias
voltage

v

MAPD/SiPM/MPPC
- High Gain (G ~ 10° - 10 %)
- Low operating Voltage (< 140V)
- Small and insensitive to magnetic
field

0

Characterization of
Multipixel Avalanche
Photodiodes

H. Erdal

Different
photodetectors



Characterization of

Multipixel Avalanche Photodiode Multive Avalanche

Photodiodes

H. Erdal
o » Pixelated device
No Amplification
e » Operated in Geiger Mode,
Linear Response VOP > Vpreakdown Different
Non-linear photodetectors
Geiger Mode

> Sour = # pixels fired
Linear Response when

]\Slgel:n;(gdeown Npixel >> Nphotons
_— / > E’Y X Sout
Reverse Bias Voltage » Gain is sensitive to voltage

and temperature change

Pictures taken with a microscope

MPPC 510362-11-25C from MAPD from Zecotek, 3x3 mm?
Hamamatsu, 1x1 mm



Multipixel Avalanche Photodiode

MPPCs/SiPMs

o] V!:m
Si" Resistor | Al - conductor
S

Substrate p*

» Depletion region (0.7-0.8 um)
with high electric field between
pt and n™ layer

» The pixels are joined together by
common aluminum-strips

» The MPPCs/SiPMs have a
finite # pixels / mm?

» Reaches a higher gain than the
MAPDs
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Multipixel Avalanche Photodiode

MPPCs/SiPMs

3 Vhias

Si" Resistor | Al - conductor
S

» Depletion region (0.7-0.8 um)
with high electric field between
pt and n™ layer

» The pixels are joined together by
common aluminum-strips

» The MPPCs/SiPMs have a
finite # pixels / mm?

» Reaches a higher gain than the
MAPDs

>

>

MAPDs

Al contact < <
vy

n-Si wafer

Deep micro-well for
charge collection

Density~10* mni”

p-Si epi. layer of
d~5p

2

Homogeneous entrance
window

Microwells for charge
trapping and collection
located a few um below
surface

High Dynamical range

Relative low gain
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From left: MAPD/MAPD3-A from Dubna and Zecotek, MPPC
510362-33-050C and MPPC 510362-11-025C from Hamamatsu

Type Size Pixel Density Gain
MAPD 3x3mm2  10000/mm? < 10°
MAPD3-A 3x3mm?2  15000/mm? 40000
MPPC S10362-11-025C 3x3mm? 3600 2.75x10°
MPPC S10362-33-050C 1x1mm? 1600 7.5x10°




Applications for MAPDs

Calorimeters

Example: Projectile Spectator Detector (PSD) at Na61/SHINE
(CERN) and CBM at FAIR (GSI)

» Hadronic Calorimeter consisting of
108 modules id

> Each module: 60 lead-scintillator o
tile sandwiches

» Wave Length Shifting fibers —
Photodetector

» Testing: MAPDs (Dubna),

Readout of full calorimeter: S
MAPD3-As (Zecotek).

lead plates

tiles
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Applications for MAPDs

Positron Emission Tomography

» |s a nuclear medical imaging technique
» Produces a 3D image of biochemical processes in the body

» Detect photon pairs emitted indirectly from a positron
emitting nuclei
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Positron Emission Tomography

» |s a nuclear medical imaging technique
» Produces a 3D image of biochemical processes in the body

Applications for

» Detect photon pairs emitted indirectly from a positron MAPDs
emitting nuclei

MAPDs are fast devices — Time-of-Flight PET
» uses time-difference in arrival time

» can among other things reduce statistical noise in the image

» SNR7or = /2 SNReopy, Ax = €2t

D-size of patient, Ax - uncertainty in position, At - uncertainty in time

Conventional

Time-of-Flight

Deteclor
Module

| Detector Detector

Module Module
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As mentioned, these devices are interesting for different

applications due to
> high gain comparable to PMT

» fast, small, compact and insensitive to magnetic field

Applications for
. . . MAPDs
> relatively inexpensive

BUT, these devices are new on the market
» They are not fully understood yet

» Characteristics change for all samples produced
— Important to characterize each sample

> There is a growing variety of different detectors
— Important to gain knowledge on each detector type

The aim of this work has thus been to come up with a setup that
makes it easy to characterize each detector with respect to

- dark current
- absolute gain

- dark rate



General Setup

PC w.
Labview

VME-Crate

[ ]

PCI Bridge

System
MAPD

Diserimi
ina NIM crate
YME- ADC !
Controller (when used)
Ext Trigger « <
Cho e
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General Setup

PC w.
Labview

VM

E-Crate

[ ]

PCI Bridge

Diserimi
ina NIM crate
YME- ADC !
Controller (when used)
Ext Trigger « <
Cho e

System
MAPD

[o—— e =]
Mean: -0.118
e RMS:  1.484
o

ADC with nothing connected

e

anpto,

ADC with preamp connected

:
|II|||||||| ‘l" i

Mean: -0.11
RMS: 15.34

|‘ ‘||||||||II|

i

Mean: -0.07
RMs: 15.52

The entire system was connected, here sample 341 is used as an

example

The noise was recorded for all

detectors used.
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Characterization of

Dark CU rrent Multipixel Avalanche

Photodiodes
Setup H. Erdal

Current that runs through the detector in absence of light

Experimental Setups

and Results
Read-out Cjrcuit
/
]
[Voltage source|«—] Labview |
Black Box

Tested for all four types of detectors
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Dark Gurent vs Reverse Bias Voltage . Dark Gurent vs Reverse Bias Voltage
o —
F w2s F s
1000 was E e
F s s —nirao
. nra7 £ ne742
800~ - F
< I < 4
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% ool z f Experimental Setups
£ £ af and Results
E 3f
3t 3
% 400 £ f f
4001—
87 8 2 |
200 i 1
Lt bt et T Bt [ T e
63 635 64 645 65 655 66 665 67 675 69 695 70 705 7 715 72 725 73 735
Bias Voltage[V] Voltage over MAPD[V]

» The dark current increases rapidly with increasing bias voltage
— Important to set bias voltage not too high

> Internal differences for each detector type
— Important to characterize all samples



Absolute Gain

Setup

== 1 I 1
Computer I—b—l | IDlanmmmorl

Voltage source I

12-15V 12V

Fast Pulser with LED

Read-out Circuit

V4
Preamp
—1
|V0]lage source |—| Multimeter |

Black Box

Optical Fibre

» Labview Program will integrate signal — charge
» Plot single photoelectron spectrum — find gain

» Find gain for various bias voltages and temperatures.
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Absolute Gain

Typical Signal Shapes

MPPC S10362-11-025C, Sample 741. Timescale: 4ns
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Single Photoelectron spectrum

1000}
BOO;
- Experimental Setups
C and Results
2 soo—
é F Pedestal
400}
ZOOi—
0 . ZOOD 4000 GDDD 8000 1DDDU 12000
ADC-Channels
MPPC S10362-11-025C, sample 742
P1pe - Position of 1pe peak in charge
Gain — Piee=Pope Pope - Position of pedestgl peak in charge
Gamp*qe Gamp - Gain of preamplifier

e - electron charge



1400

Gain vs Bias Voltage

v
MPPC $10362:33.050C Y]
fo

MPPC $10362.41025

1 L
705 4l 715 72 725
Voltage over MAPD[V]




Characterization of
Multipixel Avalanche

Absolute Gain e

Results: Gain versus reverse bias voltage H. Erdal

Gain vs Bias Voltage

140010
1200 4&
[ T
1000~ L2
F oo M
=800/
& L . Experimental Setups
00/ A and Results
S
400 eaiett B
»
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200 S
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Voltage over MAPD[V]

A linear fit can be applied to the curves, and use this to extract
pixel capacitance, breakdown voltage and the gain dependence on

voltage:
Ty pe C measured C given Vbrea kdown 0%1(\;/
MPPC S510362-11-025C 23 fF 22fF 683V,69.1V ~ 44
~7

MPPC 510362-33-050C 96 fF 89 fF 69.8 V
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To do these measurements:

» Used a termistor to measure
temperature

Gain vs Temperature Experimental Setups
and Results

<

» Termistor and detector were
placed in close contact with  w
a copper-plate 30

T T T T PO T PO T P
12 14 16 18 20 22 24 26 28 30 32 34
Temperature

MPPC S10362-11-025C sample 741




Absolute Gain

Results: Gain versus Temperature

Gain vs Temperature

140012
F 334
L § =335
1200 - =i-x< MPPC $10362-33-050C o
L X *741
L N 5':4-5 - a2
1000 - ] T’!r‘
£ - e
& 800— "'hmh
C e,
600 — -
400—  TemEmg f— MPPG §10362+11.025C
C T .y Ry
C. . v 1 P R I L L
zoql 15 30 35

Gain dependence on temperature when increasing temperature

from 24 °C -25°C:

20 25
Temperature [C]

For all detectors tested

- MPPC S10362-11-025C: ~ 2.2%
- MPPC S10362-33-050C: ~ 3.8%
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Dark Rate

Setup

» Same setup as for gain, just
turn off pulsegenerator

> Use pulseheight of 1pe from
gain measurement, set a
threshold to 0.5 of this value

» Count number of pulses
exceeding this threshold, plus
store pulseheights

— Can now find frequency as a
function of thresholdvalues

Dark Rate [Hz]

2

3
Ty

Dark Rate

200

tecanes

*teee,

400 600 800 1000
Thresholdvalues in ADC channels

1200
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Characterization of
Da rk Rate Multipixel Avalanche
Photodiodes
Results H. Erdal

Dark Rate vs Bias Voltage
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» Some conditions were changed in the Labview program for
some of the samples. This lead to:
- all bins over threshold value were counted as a peak
- dark rate for low reverse bias voltage had to be taken away
(SNR too low)
» For further measurements — average over bins to smooth out
signal
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Done so far H. Erdal
Pul ator | {Oscilloscope]
ADC

LED Read-out Circuit

/WW / Experimental Setups
mﬂ AAANS and Results
Filters
hers
Black Box

Integrated signal out of MAPD

=

Results for one of the
MAPD3-As, have fixed the bias
voltage at 66.5V

ge[nC]

Charg
e

L I L L I
0.8 1

0.4 0.6
Attenuation Coefficients
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What to do next H. Erdal

Experimental Setups
and Results

» The pulse used now has long rise time and are too broad
— Fast-pulser, this will generate a narrow pulse(~1-3ns)

» The measurements will cover the entire dynamical range of
the photodetectors

» Will use a photomultiplier as a reference, or use the filters
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» Same setup as for gain, but with high light intensity and
without preamplifier

Experimental Setups
and Results

MAPD, Sample 133. MPPC S10362-11-025C, Sample 741.
Timescale: 10ns Timescale: 4ns
- Risetime: 2.7 £ 0.2 ns - Risetime: 2.03 £+ 0.15 ns

» Done for all samples used in other experiments
» Width gives information about the charge collection time
- Depends on the geometry



Conclusion and Outlook

» Various detectors have been characterized with respect to
dark current, absolute gain and dark rate.

> A linearity measurement have been done

- Setup have not been good enough
- A new setup has been proposed, but not yet tested

» The measurements show the importance of characterizing
each individual sample

> Need to do long term stability measurements
» Determine uniformity of the MAPD
» Study crosstalk and afterpulsing effects
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