Measurement of the $B_{s} \rightarrow \mu \mu \mathrm{BF}$

Maren Ugland

Introduction

\rightarrow Neutral B-meson decays to two leptons are very sensitive to new physics. Since $\left.B_{s}{ }^{0} \rightarrow I^{+}\right|^{-}$involves a flavor changing
neutral current, the lowest order contributions within the standard model occur at one-loop level.

- The photonic penguin does not contribute because C-parity violation is not possible with an $\mathbb{l}=0$ transition.
\rightarrow The standard model Higgs penguin has a very small contribution, and can safely be neglected.
- The decay is Cabbibo suppressed because of the $b \rightarrow s$ transition, and helicity suppressed since angular momentum conservation forces the two leptons to have the same chirality.
\rightarrow New physics may contribute to the branching fractions of neutral B-meson both by introducing new particles to the loops, and by allowing the transitions to occur at tree level.

Feynman penguin diagram

Feynman box diagram

$$
\mathcal{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)
$$

Calculation of decay rates

- The decay of a heavy quark is a weak decay, but the calculation of decay rates is complicated by the fact that quarks do not exist as free objects, but are bound together in hadrons.
\rightarrow Use operator product expansion (OPE) to separate the non-perturbative long-distance effects from the perturbatively calculable short-distance effects of the transition.
\rightarrow In OPE the effective Hamiltonian describing the $b \rightarrow s$ transition is:

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) \mathcal{O}_{i}(\mu),
$$

where the short distance effects are described by scale dependent Wilson coefficients, $C_{i}(\mu)$, and the long-distance effects are described by local operators O_{i}.

* From the effective Hamiltonian, we find the decay amplitude:

$$
\mathcal{M}=\frac{G_{F}}{\sqrt{2}} V_{\text {CKM }} \sum_{i} C_{i}(\mu)\langle f| \mathcal{O}_{i}|B\rangle
$$

The Wilson coefficients are universal in the sense that they do not depend on either the initial or final state.

$$
\mathcal{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)
$$

Calculation of decay rates

- Semi-leptonic operators:

$$
\begin{aligned}
\mathcal{O}_{9 V} & =\frac{\alpha_{\mathrm{em}}}{2 \pi}\left(\bar{Q}_{\alpha} \gamma_{\mu} P_{L} b_{\alpha}\right)\left(\ell^{+} \gamma^{\mu} \ell^{-}\right) \\
\mathcal{O}_{10 A} & =\frac{\alpha_{\mathrm{em}}}{2 \pi}\left(\bar{Q}_{\alpha} \gamma_{\mu} P_{L} b_{\alpha}\right)\left(\ell^{+} \gamma^{\mu} \gamma_{5} \ell^{-}\right)
\end{aligned}
$$

\rightarrow Values of corresponding Wilson coefficients (NNLO):

$$
C_{9 v}=4.214 \text { and } C_{10 \mathrm{~A}}=-4.312
$$

\rightarrow When including physics beyond the standard model, the operators may be modified, or new operators with corresponding Wilson coefficients may be introduced.

- The largest contributions arise from models which introduce new scalar and pseudo-scaler particles, which may mediate the decay. (For instance Models with an extended Higgs sector.)
\rightarrow The standard model branching fraction:

$$
\mathcal{B}\left(B_{s}^{0} \rightarrow \ell^{+} \ell^{-}\right)=\frac{G_{F}^{2} \alpha^{2}}{64 \pi^{3} \sin ^{4} \theta_{W}}\left|V_{t b}^{*} V_{t s}\right|^{2} \tau_{B_{s}^{0}} M_{B_{s}^{0}}^{3} f_{B_{s}^{0}}^{2} \sqrt{1-\frac{4 m_{\ell}^{2}}{M_{B_{s}^{0}}^{2}}}\left(-\frac{2 m_{\ell}}{M_{B_{s}^{0}}} C_{10 A}\right)^{2}
$$

\rightarrow The CKM dependence and most of the hadronic uncertainty may be eliminated by normalizing to the well measured meson mass difference, $\Delta \mathrm{M}_{\mathrm{s}}$

Measurement of $\mathcal{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$

\rightarrow In ATLAS, only modes with two muons are considered accessible, and of these only $B_{s} \rightarrow \mu \mu$ is expected to have a branching fraction large enough to be important during the first years of data taking
\rightarrow Standard model prediction (normalized to $\Delta \mathrm{M}_{\mathrm{s}}$):

$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.35 \pm 0.32) \cdot 10^{-9}$
(hep-ph/0604057, 2006)
\rightarrow Current best limit is set by CDF using $3.7 \mathrm{fb}^{-1}$ of data: $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=4.3 \cdot 10^{-8} @ 95 \% C L \quad$ (CDF Public Note 9892, 2009)

- DO limit, using $1.3 \mathrm{fb}^{-1}$ of data:
$\mathcal{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)=1.2 \cdot 10^{-7} @ 95 \% \mathrm{CL} \quad($ hep-ex00707.3997v1, 2007)

Measurement of $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$in ATLAS

\rightarrow Since the number of B_{s} mesons produced is not well measured, the preferred method for determining the branching fraction $B_{s} \rightarrow \mu \mu$ uses $B_{s} \rightarrow \mathrm{~J} / \psi(\mu \mu) \varphi(K K)$ and $B^{+} \rightarrow \mathrm{J} / \psi(\mu \mu) \mathrm{K}^{+}$as normalization modes

$$
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\frac{N_{S}}{\alpha_{S} \epsilon_{S}} \cdot \frac{\alpha_{N} \epsilon_{N}}{N_{N}} \cdot \frac{f_{u}}{f_{s}} \cdot \mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+}\right) \mathcal{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)
$$

where $N_{S}\left(N_{N}\right)$ is the observed signal yield, $\alpha_{S}\left(\alpha_{N}\right)$ is the dimuon trigger efficiency, and $\epsilon_{S}\left(\epsilon_{N}\right)$ is the signal reconstruction efficiency for $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\left(\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+}\right)$.
\rightarrow The ratio f_{u} / f_{s} represents the difference in b -quark fragmentation probability for producing a u- or an s-quark.

$$
f_{u} / f_{s}=3.78 \pm 0.52 \quad \text { (hep-ex/0704.3575, 2007) }
$$

Measurement of normalization modes

$\rightarrow \mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+}$has a large branching fraction, which has been determined with high precision, and is reconstructed with reasonable efficiency in ATLAS.
$\rightarrow B_{s} \rightarrow J / \Psi \varphi$ is expected to yield a lower precision, but has the advantage of being independent of the b-quark fragmentation probability.
\rightarrow The reconstructed invariant mass of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi(\mu \mu) \varphi(\mathrm{KK})$: $5376.2 \pm 2.6 \mathrm{MeV}$

PDG value: 5366,3 $\pm 0.6 \mathrm{MeV}$.
Difference is understood.
\rightarrow The reconstructed invariant mass of $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi(\mu \mu) \mathrm{K}^{+}$: $5280 \pm 4.2 \mathrm{MeV}$

PDG value: $5279.15 \pm 0.31 \mathrm{MeV}$.

Reconstructed $B_{s}\left(B^{+}\right)$mass, fitted with a Gaussian and a polinomial.

Measurement of $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$in ATLAS

- Two analysis strategies are applied:
- Cut-based analysis - Simple procedure, easy to understand.
- Provides a cross check for multivariate analysis
* Boosted decision tree (BDT) analysis - Requires excellent understanding of data
- Increases efficiency by 35% with respect to cut-based analysis
- Background from exclusive semi-leptonic or hadronic two-body decays is negligible.
\rightarrow Combinatorial background (e.g. muons from other B-hadrons) is dominant source of background.
\rightarrow Analysis is based on previous work by Trygve Buanes (MC study at 7 TeV beam energy)

$$
\mathcal{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)
$$

Signal selection

\rightarrow For the cut-based analysis there are three important discrimination variables:

- Transverse decay length
- Pointing angle
- Isolation

Signal is shown as solid points, while the open circles represent the combinatorial background.

* The BDT analysis makes use of a large number of additional selection variables.

$$
\mathcal{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)
$$

Boosted Decision Trees

\rightarrow Decision trees use a known set of signal and background events, finds the variable that gives the best S/B separation, and divides the sample into 2 subsets (nodes). The procedure is then repeated for each subset, until some stopping criterion is reached.

- There are 3 main classes of stopping criteria:
- Purity of end nodes
- Size of end nodes
- Number of end nodes

- An important difference from a cut-based analysis, is that the decision tree allows a single variable to be used several times (with different thresholds)
\rightarrow After training the tree on a known sample, it is ready to be used to separate signal from background events in a sample of unknown composition.

Boosted Decision Trees

\rightarrow Boosting is introduced because the final tree is very sensitive to fluctuations in the training sample.
\rightarrow Rather than just making one tree, a large number of trees are made. Events that are misclassified in one tree are reweighted, or boosted, before making the next tree so that the probability is enhanced for the new tree to classify these events correctly.
\rightarrow After training, events are classified by majority vote, but giving more weight to the trees with a better S/B separation.
\rightarrow Usually check the BDT performance on a test sample to make sure it is not over trained.

\rightarrow Performance is as good, or better than, alternative multivariate analyses.

Next steps

\rightarrow Redo complete simulation study for 5 TeV beam energy.

- Include more variables in the BDT.
\rightarrow Determine the combinatorial background for 5TeV beam energy (sample of 1 M events available).
- 'Real data' is expected soon. (3.5TeV beam energy?) When data comes, determine combinatorial background from sidebands.

Conclusion

* First results by end of next year?

Assuming $200 \mathrm{pb}-1$ of data, we expect to be able to measure an upper limit $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<8 \cdot 10^{-8} @ 90 \%$ CL

CDF+D0 expect to set a limit $\sim 2 \cdot 10^{-8}$ (2010)
\rightarrow Improvements on current best limit, probably a few more years?
Need $1-2 \mathrm{fb}^{-1}$ to be competitive with CDF+D0
\rightarrow To measure the standard model prediction, $\mathcal{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)=(3.35 \pm 0.32) \cdot 10^{-9}$, $\sim 10 \mathrm{fb}^{-1}$ of data is needed.
\rightarrow LHCb claims evidence (3б) with $\sim 4 \mathrm{fb}^{-1}$ of data.
(Keep in mind that the 2 experiments do not collect data at the same rate!)
Competitive with LHCb with early data.

THE END!

