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Abstract

A Large lon Collider Experiment (ALICE) is a general purpose heavy—ion experiment at
CERN. It is a detector designed to study the physics of strongly interacting matter and quark-
gluon plasma in nucleus—nucleus collisions produced in the Large Hadron Collider (LHC).
The detector is built-up of sub-detectors which are studying different aspects of the heavy-ion
experiment. ALICE is an international collaboration where the Department of Physics and
Technology at the University of Bergen is among the 31 countries and 109 institutes
participating.

Huge amounts of data from the collisions in the LHC is produced every second pushing the
limit of the state-of-the-art Data Acquisition systems (DAQ) in ALICE. The ALICE Online
system reduces the overall data rate to fit the event building bandwidth and storage capability
of the DAQ system. The Timing, Trigger and Control (TTC) is a part of the Online System
and has a Central Trigger Processor (CTP) designed to select events containing potential
interesting physics, scaled down to fit the restrictions imposed by the bandwidth of the DAQ
system.

The Time Projection Chamber (TPC), Photon Spectrometer (PHOS), Forward Multiplicity
Detector (FMD) and the Electro Magnetic Calorimeter are sub-detectors which utilize a
BusyBox to tell the TTC when it is ready to take event data. The Front-end electronics (Fee)
of these four detectors can only buffer 4 or 8 events, and the BusyBox keeps track of the
number of used buffers. If the buffers are full, the BusyBox asserts a busy signal to the TTC
system which prevents new triggers from being issued.

This thesis describes the functionality of the BusyBox, along with development, testing and
upgrades of the firmware.

The BusyBox is a Field Programmable Gate Array (FPGA) based system containing a
Detector Control System (DCS) board running a light weight version of Linux with an
Ethernet interface and an LVDS interface to the DAQ and CTP system. The firmware is
written in VHDL and has a DCS bus module interface where internal control and status
register can be read or written to.
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Chapter 1

ALICE - A Large lon Collider Experiment

This chapter gives a brief overview of the ALICE experiment and the different scientific
instruments at the Large Hadron Collider (LHC), before ALICE is discussed in more detail.
This includes the ALICE physics, sub-detectors, online system and data flow.

1.1 Introduction

Figure 1-1: lllustration of the LHC on the border between Switzerland and
France, from [1].

On the border between France and Switzerland near Geneva lies the biggest scientific
instrument in the world, the Large Hadron Collider [1] (LHC). Situated 100 meters
underground and with a circumference of 27 km, it will be used by particle physicists to study
the smallest known particles, how the universe evolved and how it works today.
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CERN' (The European Organization for Nuclear Research) is the largest particle physics
laboratory in the world, and its main function is to provide the particle accelerators and other
infrastructure needed for high energy physics. The Large Hadron Collider (LHC) is what most
of the activities at CERN are directed to.

LHC can create the conditions just a fraction of a second after the Big Bang by colliding
subatomic particles called hadrons. In opposite directions, either protons or lead ions will be
accelerated to 99.999999% of the speed of light inside the accelerator. The beam pipes are
kept at ultra high vacuum surrounded by superconducting electromagnets cooled down to
minus 271°C. The electromagnetic field pushes the hadrons around and thousands of magnets
are used to direct and focus the beams before the particles collide.

Particles collide at four points, where four main experiments are located:

o ALICE (A Large Ion Collider Experiment): Designed to look for Quark Gluon
Plasma (QGP).

o ATLAS (A Toroidal LHC ApparatuS): Is mainly looking for the Higgs boson.

o CMS (Compact Muon Solenoid): Investigating physics in the TeV domain.

e LHCbD (LHC beauty): Investigating physics related to the bottom quark.

There are six large detectors at these four points. Each of them will study particle collisions
under a different view, and with different technology.

ALICE [1] (A Large Ion Collider Experiment) is one of them and is optimized to study heavy
ion collisions which will generate quark-gluon plasma, a state of matter wherein quark and
gluons are deconfined. ALICE consists of sub detectors in an onion—like structure around the
collision point.

The Inner Tracking System (ITS), Time Projection Chamber (TPC), Transition Radiation
Detector (TRD), Time of Flight (TOF), Photon Spectrometer (PHOS), High Momentum
Particle Identification Detector (HMPID), Muon Spectrometer, Forward Multiplicity Detector
(FMD), and the Electro-magnetic Calorimeter (EM-Cal) is the ALICE central barrel
detectors|[1].

The particles circulate in well defined bunches with a bunch spacing of 25 ns. This
corresponds to a frequency of 40 MHz and a particle will make 11 245 circuits every second.
Each beam has 3565 bunches and a bunch can contain 100 billion particles, but not all
bunches will contain particles. During a proton run, 2808 of the 3565 bunches contains
particles and only 608 particles during a lead run. The average crossing rate for lead is 6.8
MHz and 31.6 MHz for protons, but the maximum collision rate for Pb-Pb is 8§ kHz and 200
kHz for p-p in ALICE [2].

" CERN is an acronym for Conseil Européen pour la Recherche Nucléaire. (http://cern.ch)
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Figure 1-2: The ALICE detector. From

Particle collisions are called events. The collision energy for protons is up to 14 TeV and up
to 1150 TeV for lead [1]. These energies have never been reached in a laboratory before, but
in absolute terms it is not very high energies compared to everyday life. Clapping your hands
will produce more collision energy. It is the energy concentration which makes particle
collision so special.

When a collision occurs, a shower of particles will spread in every direction. Some will decay
faster than others, hence the onion-like structure to detect them before they do.

In simple terms, the different detectors have different ways of detecting different things. But
what is common for every detector, is that it converts what it detected to an electrical signal.
This signal is then digitized and stored. But how are events detected? In addition to the main
detectors in ALICE there are several sub detectors used to determine if an event has occurred.
Not all collisions are of interest, only the good ones that are head on and generate a certain
amount of energy. Based on information from the sub-detectors, a Central Trigger Processor
(CTP) sends triggers to the sub-detectors Front-end electronics (Fee). The Fee starts buffering
data upon a positive trigger, and sends it to the Data Acquisition system (DAQ). The Busy
Box system is designed to monitor and verify the transfer of event data, and to prevent
overflow in the Fee buffers.
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1.2 A Large lon Collider Experiment

A Large Ion Collider Experiment (ALICE) is

a collaboration consisting of 32 countries

with 109 institutes and more than 1000 TN,
members [1]. Together, physicist and ]

engineers designed a general purpose heavy-
ion experiment to study physics of strongly
interacting matter and quark-gluon plasma in
nucleus collisions at the LHC. Not only

heavy systems will be studied, but also lower-

mass ion collisions. Figure 1-3: Member counties

2008. From [1]
To understand the phenomenon studied in ALICE, physicists need many different detectors to
observe a collision from different views in order to get the whole picture. Hence, ALICE is
constructed in an onion-like manner with its sub-detectors surrounding the collision point.
The whole thing is wrapped in a huge magnet.

Triggers are very important in ALICE. The data readout starts when a central trigger system
distributes triggers to the sub-detectors readout electronics. Events contain so much data that
it is impossible to handle the data without state-of-the-art technology. Not all of the 18
detectors are of interest in this thesis since the Busy Box only utilizes TPC, PHOS, EMCal
and FMD.

1.3 ALICE Physics

Physicists do not have a complete theory of how elementary particles and their fundamental
interactions work. This theory is called The Standard Model and describes all particles that
make up visible matter in the Universe, and three of the four fundamental interactions.

An atom consists of electrons orbiting the nucleus with protons and neutrons. Protons and
neutrons are composite particles named hadrons. The hadrons again consist of quarks which
are engaged in the strong interaction named gluons. Quarks are never found alone in nature
and are always bound together in hadrons.

Quarks are about one hundredth of the mass of a proton or a neutron. Is the mechanism that
confines quarks responsible for generating most of the mass of ordinary matter? By colliding
heavy ions in LHC, quarks and gluons are no longer confined. They undergo a phase
transition and Quark Gluon Plasma (QGP) is formed. The plasma is 100 000 times hotter
than the sun, but expands and cools down after about 10 s and regroup to form ordinary
matter. Only traces of the QGP can be detected. QGP is part of the effort to consolidate the
grand theory of particle physics and ALICE will study the properties of QGP.
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1.4 The ALICE Sub-Detectors

After an event, a wealth of information needs to be processed. The data readout in ALICE is
based on triggers. The triggers are distributed by a central trigger processor system, and the
detector electronics start to buffer and read out data upon receiving a trigger. Subsequently,
data is sent to computer farms and analyzed before it is permanently stored.

TPC, PHOS, FMD and EMCal are the sub detectors which will be utilized for the Busy Box,
and they will be discussed in the next sections.

1.4.1 Time Projection Chamber

HY electrode (100 kW)

field cage

readout chamber

Figure 1-4: Layout of the ALICE TPC. From [3].

The TPC’s [3] function is to provide trace finding, charge particle momentum, particle
identification and two-track separation. It is basically a barrel filled with a compressed gas
mixture with a high voltage (HV) electrode at its axial center. This creates two symmetric
regions with high electrostatic fields in both drift directions. After an event, particles will
leave a trace in the form of ionized gas and hit the readout chamber at a constant velocity.
Depending on the electrical charge and the momentum of the particle, the trace will be bent
stronger or weaker in either direction. About 560 000 electronic channels in 36 sectors, 18 on
each end-cap of the chamber, detect the electric charges.
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1.4.2 PHOton Spectrometer

Figure 1-5: The PHOS detector; to the left is the lead tungstate crystals.
From [4].

PHOS [4] is a high resolution electromagnetic calorimeter consisting of 17 920 detection
channels based on lead tungstate crystals (PWO). PHOS detect collision temperatures when
high energy photons hit the crystal and make them glow. This light can be detected by
photodiodes.

1.4.3 The Forward Multiplicity Detector

FMD [5] will study total particle production, elliptic flow and multiplicity fractions at forward
angles relative to the LHC beam line. It is a silicone strip detector with 51 200 strips arranged
in 5 rings, and consist of 3 sub-detectors. The sensors are arranged in one or two rings around
the beam-line. In general this detector utilizes the small band-gap in semiconductors and with
an applied external electrical field, excited electrons due to charged particles traversing the
crystal, will drift towards the anode. Holes drift towards the cathode and current flows.

1.4.4 ElectroMagnetic Calorimeter

EMCal [6] has much of the same functions as PHOS, but it will study the properties of matter
at high densities and temperatures over an wider area. The study involves measuring photons
and particles called Jets.
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1.5 ALICE Online System

Timing, Trigger and Control (TTC), Detector Control System (DCS), Data Acquisition
(DAQ) and High Level Trigger (HLT) controls the operation of the detectors and are named
“Online Systems”. The Experiment Control System (ECS) is the top level control of the
ALICE experiment. The online systems can operate independently of the ECS and have little
communication between them.

ECS

HLT DAQ TTC DSC

Figure 1-6: The different online systems in ALICE.

1.5.1 Timing, Trigger and Control System

All the experiments at LHC need a common timing, trigger, and control system in order to
detect, synchronize, and control the data readout of events. The LHC use a precise bunch
clock (40 MHz) and timing signals in order to control the detector synchronization and data
readout. The ALICE TTC system [7-9] has a Central Trigger Processor (CTP) that generates
different levels of hardware triggers based on input from the fast detectors. The triggers help
filtering events that, for some reason, are not interesting. The CTP use Local Trigger Units
(LTUs) as an interface to distribute the triggers to each sub-detector. Through optical fibers
the LTUs sends trigger messages on two channels in addition to the global LHC clock to the
sub-detectors Fee. The LTU receives an important feedback from the Fee, the busy signal. If
the buffers on the Fee are full, the busy signal is sent to the LTU and then to the CTP, which
blocks trigger from being distributed to the Fee. TPC, PHOS, FMD and EMCal utilize the
Busy Box in addition to the Fee busy signal.

1.5.2 Data Acquisition System

Alice DAQ system [1]is responsible for moving data from the sub-detectors to a permanent
storage facility. The DAQ system decides whether to collect or to discard the data from a
collision. The Fee receives the triggers via the LTUs and the optical broadcast system. If a
positive trigger is received, the data is transferred to the Local Data Concentrator/Front-End
Processor (LDC/FEP). There, the data is checked, processed and assembled into sub events
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before it is sent to the Global Data Collector (GDC) computers, which do the event building.
Finally, the data is temporarily stored in the Global Data Storage Servers (GDS) before it is
shipped and archived in the CERN’s computing center where they become available for the
offline analysis.

1.5.3 High Level Trigger

The ALICE DAQ has an archiving rate constraint of 1 GB/s and the detectors can produce
data in the hundreds of GB/s. The purpose of the High Level trigger system (HLT) is to
reduce the overall data rate from the sub-detectors by event selection (trigger on event),
selection of Region of Interest (Rol) and data compression [9].

1.5.4 Detector Control System

The Detector Control System (DCS) is in charge of ALICE’s experimental equipment.
Everything from control of the cooling system, the ventilation system, the magnetic fields and
other support system as well as the configuration and monitoring of the Fee in the ALICE’s
sub-detectors. The DCS tasks are distributed over many embedded computer devices and PCs
in a heterogeneous system, allowing independent operations and a scalable design. The Fee
DCS is detached from the data flow and only controls, configures and monitors the Fee. The
configuration task includes uploading configuration data to the Field Devices, like the
BusyBox.

1.6 About This Work

The Department of Physics and Technology at the University of Bergen is involved in several
research projects at CERN. The microelectronic group at the university is responsible for the
development of electronics needed in some of those projects. Development of the BusyBox
started in 2005 with the design of the breadboard and 19” rack case by Anders Rossebg and
Bjgrn Pommeresche. Magne Munkejord developed the firmware for the FPGA.

My role in this project has been to document, upgrade and test the BusyBox. The work for
this thesis started in early august 2008 after spending some weeks at CERN. In the first stage
of the project I acquired the necessary software and project files to begin experimenting with
the firmware. My focus became to learn all aspects surrounding the BusyBox. I started out
studying the Virtex-4 FPGA, and refresh my knowledge about VHDL, by learning VHDL
code written for the BusyBox, along with experimenting with the BusyBox. Much time was
spent on learning the VHDL code written for the BusyBox, and in late November to late
January, I wrote the User Guide for the BusyBox.

A fix to the Trigger Receiver module (developed by Johan Alme) was requested by Luciano
Musa (leader of the ALTRO Design Team and Coordinator of the ALICE TPC Fee), based on
a change in the trigger specifications from the ALICE trigger group. I had to verify that the
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new change complied with the BusyBox, and studies showed that the firmware had to be
modified. Firmware simulations were conducted both on the Trigger Receiver module and the
BusyBox before the firmware was compiled. Along with Dominik Fehlker, we did tests in the
microelectronics lab in Bergen on the hardware. This was a full scale test of a real system
with Front-end electronics (Fee), CTP emulator and a Local Data Concentrator (LDC) with
D-RORC:s.

I also wrote a proposal for an upgrade of the BusyBox communication protocol, see Appendix
B, and updated the BusyBox section on the Bergen Wiki Webpage.

This is still an ongoing project, and even though the BusyBox is commissioned, new changes
will come in the future, and upgrades to the firmware are then necessary.

1.6.1 Content

This thesis describes the BusyBox and how it works. The hardware and the software used for
testing and generating firmware are described. It examines the testing methods for firmware
and VHDL, and with what needs to be done in the future.

Chapter 2: Gives an overview of the BusyBox system and setup. Triggers and trigger
handling is discussed along with adaptation made for the BusyBox.

Chapter 3: Explains the BusyBox communication protocol. How the physical layer works,
message formats and transmission types.

Chapter 4: Describes the firmware functionality, structure and modification done to the
BusyBox. Information about VHDL and firmware is also given.

Chapter 5: Gives some explanation of how testing and simulations are performed, and
discusses the verification plan and how testing both with firmware and hardware are carried
out, before the test results are outlined.

Chapter 6: Gives a summary, outlook and conclusion of the work that has been done.
Appendix A: Abbreviations.

Appendix B: Proposal for an upgrade of the BusyBox communication protocol.
Appendix C: Test Setup

Appendix D: User Guide for the BusyBox.
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Chapter 2

System Overview

Triggers are essential in ALICE to select events of interest and reduce the overall data rate to
match the storage capacity of the Data Acquisition System (DAQ). This chapter describes the
DAQ system, the reception and handling of triggers, and trigger information in the trigger
receiver logic. How data is read and types of technology the BusyBox has adopted is
discussed at the end of the chapter.

2.1 Introduction

Counting Rooms

/_

%
Shielding Plug

mﬁ ALICE detector

W W ; TTC

. A L -‘—_;—_/_
| :_f ' 7

L

&

S=tk:

2 F . |
i

Figure 2-1: General layout of underground structure at Point 2, from [10].

The ALICE experiment needs a system to minimize the overall data rate from all its sub-
detectors. The maximum permanent storage rate is 1.25 Gb/s, while one sub-detectors like the
Time Projection Chamber (TPC) can produce a stunning 710 Gb/s of data from a p-p event.
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To manage this task the ALICE experiment utilizes a trigger based data readout system with
triggers generated from the Timing, Trigger and Control (TTC) and High Level Trigger
(HLT) system discussed in chapter 1.5.

Figure 2-1 shows an overview of the underground structure at Point 2 where the ALICE
experiment is located. The BusyBox together with some of the DAQ system, are located in
the counting rooms which are shielded from radiation by a shielding plug. Just outside the
ALICE detector is the trigger system with the Central Trigger Processor (CTP) and Local
Trigger Units (LTU) where the busy signal is routed to from the BusyBox.

2.2 ALICE Data Flow

Figure 2-2 shows the principle of how data flows and triggers are distributed in the ALICE
DAQ system. The TTC system (CTP and LTU) distributes triggers to the detectors, and the
Front-end electronics (Fee) starts to buffer data if it receives a L0 trigger, or in the case of
TPC an Lla trigger. If a trigger sequence ends with an L2a trigger the event data are shipped
to the DAQ-ReadOut Receiver Cards (D-RORC) where the data fragments are merged by the
Local Data Concentrators (LDC). A copy of the data from the D-RORCs are also sent to the
HLT system and processed before it is sent back to the D-RORC and LDC. The LDC ships
the data fragments to the Global Data Concentrators (GDC) for a complete merge of the data
before it is sent to a permanent storage. The data then contain region of interest information,
trigger information, event summary data and the compressed data. Due to dense cabling the
TPC, PHOS, EMCal and FMD use a BusyBox to tell the TTC system when it can take data,
while in the other sub-detectors this is done by the Fee itself.

Rare/all H-RORC HLT . DDL
il FEP
BUSY o BUSY F 1 [] Lo L1a, L2a
HLT
Busy Cluster
- Fee Box Fee
D-RORC D-RORC D-RORC
LDC LDC LDC
EDM | | Event Building Network |
Event GDC GDC
File | Storage Network |

Figure 2-2: Overview of the ALICE Data Acquisition System, from [1]
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The Time Projection Chamber (TPC), PHOton Spectrometer (PHOS), Forward Multiplicity
Calorimeter (FMD) and ElectroMagnetic Calorimeter’s (EMCal) Front-End Electronics (Fee)
have a common design, and share most of the same components. Each detector has a set of
Front-End Card (FEC) connected to a Readout Control unit (RCU). The RCU is linked to the
D-RORC in the counting rooms. The Busy Box is also situated in the counting rooms, one for
each of the four sub-detectors. The Busy Box communicates with the DRORCs and the LTU.

2.2.1 Front-end cards

The FECs [11] sample, digitize, process and buffer signals from an event. Key components
are the PASA and ALTRO chips. The charge collected on the detectors pads is amplified and
shaped by the PASA chips. The pulses produced are then sent to the ALTRO chip which is a
mixed signal ASIC with an integrated 10 bit ADC and digital filters. The signal is sampled at
a configurable rate of 2.5 to 10 MHz, filtered and buffered into memory. Depending on the
sampling rate, 4 or 8, events can be buffered.

Backplane
connectors

Charge from | |

ALTRO bus
detector pads
' - Jeadowt 5 pasA ALTRO| | |
| | FEC bus |
|

I_____

Figure 2-3: Overview of Front-end card. Up to 128 channels can be
supported by one board.

Every FEC has two backplane connectors, a control node (FEC bus) and a readout node
(ALTRO bus). The nodes are connected to a PCB backplane. Up to 14 FECs can be
connected to each backplane and two branches of backplanes are connected to a Readout
Control Unit (RCU).

<«4+—— ALTRO bus

Figure 2-4: Front-end cards connected to the PCB backplanes divided into
Branch A and Branch B.
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2.2.2 Readout Control Unit

TTC Ethernet

‘ RCU Motherboard
Branch A _lﬁ DCS

FPGA oAG
Branch A L1~ sIU

Figure 2-5: Overview of the Readout Control Unit.

The Readout Control Unit (RCU) includes a DCS board and a Source Interface Unit (SIU) on
a motherboard. It has two tasks. 1) Move data from the FECs to the SIU and 2) control the
FECs and sub systems on the RCU motherboard. The number of FECs connected to the RCU
varies between the four detectors (TPC, PHOS, FMD and EMCal). The FECs and RCU are
named Front end electronics or just Fee.

DCS board

The DCS board is an embedded computer measuring 10 cm x 15 cm and runs on a tailor made
version of Linux. It has a TTCrx chip to decode TTC signals from the LTU and an Ethernet
interface. This makes the DCS board very versatile and is therefore used by other systems like
the BusyBox.

Detector Data Link

A Source Interface Unit (SIU) and a Destination Interface Unit (DIU) linked together with
two optical fibres are the parts that make up the Detector Data Link (DDL) system. The link
has a transfer rate of up to 200 Mb/s in both directions and is used for transferring event data
from the FECs to the DAQ system. The SIU board is mounted on the RCU and the DIU is
mounted on the Readout Receiver Cards (RORCs) in the DAQ system. Configuration data
can also be sent on the DDL for configuring the Fee. This can only be done when the DDL is
not used for sending event data and the Ethernet interface on the DCS board is used instead.

SIU Optical Fibre DIU

Figure 2-6: Overview of the Detector Data Link system used by the RCU to
send event data to the RORCs.
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2.2.3 Read-Out Receiver Cards and the DAQ system

Event data are shipped from the RCUs to special PCI cards named DAQ-ReadOut Receiver
Cards, or D-RORCs. A D-RORC has two DDL links, one link to the RCUs and another link
to the HLT. Data received on from the RCU is copied and transferred to the HLT via the SIU.
The Busy IF interface is used as an LVDS link to the BusyBox and the event ID from a recent
event is sent on request to the BusyBox from the D-RORC. Up to six D-RORCs can be
installed in an ordinary PC called a Local Data Concentrator (LDC). The DAQ system
consists of several LDCs which will merge the event fragments from one detector into a sub-
event and forward it to the Global Data Concentrator (GDC). All the sub-events are then
merged into a complete event and sent to CERNs storage facility for permanent storage and
later analysis [1].

RCU D-RORC
HLT FPGA
BusyBox
PCI bus —
LDC

Figure 2-7: Overview of the DAQ-ReadOut Receiver Card.

2.2.4 Trigger system

The ALICE trigger system [12] is situated in the experiment hall and has a centralized layout.
The heart of the trigger system is the Central Trigger Processor (CTP) and is responsible for
generating three hierarchical hardware triggers — L.O, L.1a and L.2a. This is done before an
event is accepted, transmitted to the DAQ system, and copied to the HLT for further software
evaluation.
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Figure 2-8: Overview of the ALICE Trigger system.

Some detectors are vulnerable some time before and after a collision due to drifting particles
and for this reason the CTP will issue a L2 Reject trigger message if too much activity has
been recorded before and after a collision. This is the so called Past-future Protection which is
a procedure that selects events with no pile-up of long drifting ionized particles at a
programmable time interval, or with a number of pile-up interactions up to a programmable
limit. The Past-future Protection is preformed at all three trigger levels.

The trigger traffic is sent from the TTC system via an optical fiber network to all the sub-
detectors Front-end electronic. Information sent by the TTC system is divided into three
categories. 1) L1 Accept triggers, 2) Serial B messages and 3) the bunchcrossing frequency
(BCO). L1 Accept contains the time critical LO and L1 triggers, Serial B contains whole
trigger messages like the L1 message, Rol (Region of Interest message), [.2a and L2r
messages. The event ID is a part of the L.2a trigger message.

2.3 Processing of Trigger Information

Trigger information is sent to the TTCrx ASIC chip on RCU’s DCS boards. The TTCrx chip
decodes the optical information to electrical signal and routes it on two dedicated lines to the
FPGA on the RCU’s motherboard along with the BCO clock. Two lines, named Channel A
and Channel B, are used for distributing triggers and messages to the FPGA from the DCS
board.
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Optical ChannelA
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TTC TTCrx FPGA
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L

DCS board

RCU motherboard

Figure 2-9: Overview of the TTC signal distribution to the RCU FPGA. The
rest of the main components are hidden for illustration purposes.

2.3.1 Triggers

The RCU FPGA has a trigger receiver logic which is able to decode the information sent from
the TTCrx serial B line. This decoding is done by a firmware module called the Trigger
Receiver Module, and it can detect transmission errors, connection errors and generates the
CDH header with the event ID among others.

Legal Trigger Sequences for TPC, PHOS, FMD* and EMCal
LO - (L1r)

LO —L1a —L1a message — L2a message

LO —L1a—L1a message — L2r message

Pre-pulse*

Pre_pulse — LO*

Pre_pulse — L0 — L1a —-L1a message — L2a message*
Pre_pulse — L0 —L1a —L1a message — L2r message*

Table 2-1: Legal trigger sequence for TPC, PHOS, FMD and EMCal.
Sequences marked with star are only valid for FMD.

The triggers and messages from TTC system must arrive at specified latencies, and the trigger
receiver logic controls that the sequence and timing is correct.

Trigger Latency with respect of BCO
Lo 1.2 us
L1a 6.5 us
L2a/L2r messages 88 ps

Table 2-2: Legal timing of the trigger sequences. BCO is the bunchcrossing
leading to the collision.
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2.3.2 Trigger Reciver logic overview
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Figure 2-10: Schematic overview of the Trigger Receiver module, from [9].

The Trigger Receiver Module decodes the trigger information submitted from the TTC
system. Channel A is decoded into the L.O and L1a triggers. Channel B is first deserialized and
then hamming encoded before the data is split into broadcast- and address messages. The
sequence validator verifies that the sequence of triggers and messages are correct and will
output control signals regarding the actual event. When a sequence is received and validated,
the data is formatted into the CDH version 2 format and stored in a FIFO. The CDH message
format and structure of the FIFO is shown in Figure 2-11.

——L2_trigger—» FIFO_wrapper — Buffered_events—»
eventinfo—3» — Write_enablem FIFO (128x33)
——eventerror—p Event n (9x33) header——
JR— Event Event | Event |© (MO Ik [N I~
head‘er01 —> Header 3| | n47 |- ) oy a| $| BI $| $| a_)l $| 5o
! (9x33) (9x33) | (9x33) |R|®|® @ | ® 8 |6|5E| | e—Read_enable——
' gEEEsss
——header08 —p

Figure 2-11: Structure of the CDH FIFO, from [9]

2.3.3 Trigger decoding

In addition to channel A and channel B, the system clock is also received by the DCS board
from the TTC system. The system clock is the clock that is directly synchronous to the BC
frequency in LHC (40 MHz).
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Channel A

L0 and L1a triggers are received by Channel A from the TTCrx chip on the DCS board and
distributed with LVDS signalling to the RCU FPGA. A L0 trigger is defined to have a length
of 1 clock period and an L1a is defined to have length of 2 clock periods synchronous with
the system clock (BCO).

e I T T
(O o I | — Q Q _________________________

25 ns S0ns

BCO LO L1a
(t=0us) (t=1.2 us) (t=06.2 us)

Figure 2-12: LO and L1a trigger distribution on channel A. The clock is the
system clock in LHC, from [9].

Channel B

Trigger messages are received by channel B and can be divided into individually addressed
messages and broadcast messages. An important feature of the broadcast message is the
bunch count reset, which resets the local bunch counter that is used for event identification.
The address messages include information on the bunch crossing ID and the orbit ID that
gives the unique event ID important for the BusyBox.

2.4 Data Readout

After a trigger sequence has been validated, the CDH is generated and stored in the FIFO, see
section 2.3.2. The FIFO will set a flag to inform the data readout logic that data is available
and ready to be read out.

Event Info | Parity | X”A956” | “0000” | Event Information(11:0)
Event Parity | “0000” | Event Errors(27:0)

Error
Header 01 | Parity | “0000” | version(3:0) | “000” | CIT | RoC(3:0) | ESR | L1SwC |
“00” | BCID(11:0)

Header 02 | Parity | X"00” | OrbitID(23:0)

Header 03 | Parity | X"00” | L2Class[47:24]

Header 04 | Parity | X“0” | DAQ_error/status(15:0) | Local_BCID(11:0)
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Header 05 | Parity | L2Class[31:0]

Header 06 | Parity | Roldata[3:0] | X"00” | “00” | L2Class[49:32]
Header 07 | Parity | Roldata[35:4]

Table 2-3: Data stored in the CDH FIFO, from [9].

An include payload flag tells the readout logic whether data should be sent together with the
header to the DAQ system or not. If this flag is zero the CDH head is transmitted without any
payload, and the Fee buffer is dumped if it contained any data. If this flag is 1 then a full
readout process is started. The payload flag is set when an L.2a, L.2r or a .2 timeout has been
issued by the Sequence Validator module. If orphan messages arrives, i.e. no triggers are
detected only messages, the include payload flag will not be, but the CDH header is sent.

2.5 Adaptions for the BusyBox

The BusyBox takes advantage of technology already in use in the ALICE project. The DCS
board and the Trigger Receiver firmware module from the RCU are adopted by the BusyBox.

TTC BusyBox motherboard

DCS board FPGA FPGA

Ethernet

J

Busy 216 RJ-45 —
LTU D-RORC

Figure 2-13: Overview of the BusyBox main components.

The Trigger Receiver module from the RCU needs to be fitted with a wrapper to
communicate with the rest of the BusyBox firmware. The bus wrapper translates the
definition of the bus from internal RCU type to Trigger Busy Logic type, see Figure 2-14. The
main difference is that the width of the data bus in the Trigger Busy Logic is 16 bits, while it
is 32 bits for the RCU.
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Figure 2-14: Wrapper that translates the BusyBox bus protocol to the RCU
bus protocol, from [9].
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Chapter 3

The BusyBox Communication Protocol

This Chapter describes the communication protocol which is used by the BusyBox and the D-
RORC:s to send commands and receive event IDs.

3.1 Introduction

Besides decoding trigger information the BusyBox must also be able to communicate with the
D-RORCs. The communication is necessary in the sense that the BusyBox needs to know
when to set the busy signal to the TTC system, and this will be discussed in more detail in
chapter 4.

The BusyBox communication protocol was developed by Magne Munkejord as part of his
master thesis. His work included investigation of serial communication protocols,
implementation and testing. A robust serial communication protocol with the D-RORCs was
then achieved.

The protocol defines the mechanical, electrical and functional characteristics of a serial data
bus. It feature an LVDS coupled network interface, NRZ encoding, RS-232 like message
format and full duplex command/response protocol. The communication link has a data rate
of 40 Mbps.

Master Slave
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- D-RORC
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> Receiver k— Bus
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Bus
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«— Transmitter Receiver k= Bus
«— Receiver .. —| Transmitter k— Controller D-RORC
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Figure 3-1: BusyBox - D-RORC bus structure.
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3.2 Physical Layer

The communication between BusyBox and the D-RORCs are done with LVDS and the
transmission lines are twisted pair cables with RJ-45 connectors. The TP cables are not longer
than 15 m, thus providing good signal integrity.

3.2.1 LVDS

LVDS (Low-Voltage Differential Signalling) is an electrical signalling system that can run at
very high speed over inexpensive twisted pair copper cables. LVDS is a differential signalling
system, and transmits two differential voltages which are compared by the receiver. LVDS
uses this difference in voltage between the two wires to encode the information.

The Virtex-4 FPGA is configured with the LVDS 1/O standard specified as LVDS_25 for the
output and the input I/O block.

3.2.2 Twisted Pair and RJ-45

Twisted pair cabling is a form of wiring in which two conductors, the forward and return
conductor of a single circuit, are twisted together for the purpose of cancelling out
electromagnetic interference from external sources. The RJ-45 is a standard eight wire
connector.

Standard straight Cat-5 twisted pair cables with RJ-45 connectors are used in the BusyBox —
D-RORC communication lines and the connection scheme is shown in Figure 3-2. The wiring
scheme is the same as used for 10/100 BASE-T Ethernet.

1 orange/white
12345 6 7 8 2 orange
3 green/white

RX+ 3 ><>C 1 TX+ 4 blue/white
RX- TX- 5 blue

BusyBox D-RORC

6 2
X+ 1 ><>C 3 RX+ 6 green
TX- 2 6 RX- 7 brown/white
8 brown

Figure 3-2: RJ-45 pin connection for BusyBox and D-RORC. Connector is
shown to the right. Straight through cables are used.

2 DIFF_TERM is enabled to set the internal differential resistor.
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3.3 Message Formats

The communication on the bus consists of two types of messages: 1) Message sent from the
BusyBox, and 2) Message sent from the D-RORCs. All words sent are 16 bit long with an
RS232-like message format: 2 start bits, 16 data bits, 1 parity bit and 1 stop bit. The BusyBox
message is also Hamming encoded.

BusyBox message

The BusyBox message has two 4 bit words: The Command type word and the Request ID
word. The remaining 8 LSB bit of the message are unused, see Table 3-1.

15-12 11-8 7-0
Command type Request ID Unused
Table 3-1: Bit map for BusyBox message.

Command type The command type word is used to command the D-RORC:s to transmit
event ID or to do error handling in relation to debugging, see Table 3-2.

Command type Bit Code Description

Request Event ID 0100 Request an Event ID from the D-RORC.

Resend last message | 0101 Command the D-RORC to re-transmit the last message sent.

Force pop Event ID 0110 Command the D-RORC to pop one Event ID from its local
queue.

Force Request ID 0111 Command the D-RORC to store the attached Request ID.

Table 3-2: Command types.

Request ID The request ID word is generated by the BusyBox to control the event ID queue
in the D-RORC:s.

D-RORC message

The D-RORC message is 48 bit long with 4 words: Request ID, Bunchcount ID, Orbit ID and
D-RORC ID, see Table 3-3. The message is divided into three 16 data bits before it is sent.

47 — 44 43 - 32 31-8 7-0
Request ID Bunchcount ID Orbit ID D-RORC ID
Table 3-3: Bit map for D-RORC message.

Request ID See BusyBox message.

Bunchcount ID The bunchcount ID is the number of the bunch that is involved in the
collision.

Orbit ID The orbit ID is the number of times all bunches has circulated since the

start of the run.
D-RORC ID The D-RORC ID is the unique ID given to each D-RORC.
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3.4 Transmission

Both the D-RORC and BusyBox run on the same nominal bunch cross frequency, but do not
share the same clock source. This is defined as a plesiochronous system and refers to the fact
that this system runs in a state where different parts of the system are almost, but not quite
perfectly synchronized. The sender and receiver operate at the same nominal frequency, but
might have a slight frequency mismatch, which leads to a drifting phase.

The communication between BusyBox and D-RORC use NRZ line coding. A NRZ (non-
return-to-zero) code is a binary code in which 1’s are represented by one significant condition
and 0’s are represented by some other significant condition, with no other neutral or rest
condition. NRZ is not inherently a self-synchronous code, and needs some kind of
synchronisation technique to avoid bit slip.

The BusyBox has two clock domains, clock A and clock B. Clock A is 200 MHz and is
derived from clock B, 40 MHz, which is the nominal BC frequency in LHC. Clock A is used
for serial communication with the D-RORC:s.

Messages sent from the D-RORCs are 48 bit long, and commands sent from the BusyBox are
16 bit long. To avoid that the two communication devices get out of synch due to the system
being plesiochronous, long bit streams are avoided by dividing the D-RORC messages into
three 16 bit messages before they are sent to the BusyBox. In addition to this, each bit is
cycled 5 times with respect to clock A, giving a 40 Mbps rate. At the receiving end, the bit
stream is sampled into a shift register long enough to hold a complete message. Then, the
message is run through majority gates to determine the logic values of the capture data.

0 5 10 15 90 95 100

Y

Start bit 1 .., Startbit2 . Data bit 0 - 15 i Paritybit \i, Stop bit i

Message

Time (clock cycles)

Figure 3-3: Message format.
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Chapter 4

Design and Functionality of the BusyBox

The BusyBox system is FPGA based and written in VHDL. This chapter will first give a short
introduction to VHDL and firmware and the remainder of the chapter will discuss the
functionality of the BusyBox. A detail description of the firmware modules are given in
Appendix D.

4.1 Introduction

Every detector has to tell the trigger system when it is ready to take a new event, and the
BusyBox does exactly this. To know when the detectors are ready the BusyBox3 keeps track
of free buffers in the Fee of the TPC, PHOS, FMD and EMCal. It will inform the TTC system
if buffers are full and no more data can be accepted, i.e. the detector are not ready to take a
new event, by issuing a busy signal to the LTU. The LTU forwards the busy to the CTP that
mask any incoming triggers from being distributed to the Fee. For some sub-detectors the
busy are set by the Fee itself, but due to dense cabling the TPC, PHOS, FMD and EMCal
need to use the BusyBox in order to keep track of free buffers.

The BusyBox can keep track of free buffers in the Fee by comparing the current event ID in
the D-RORC:s with the event ID it recently received from the LTU. If these two event IDs
match, it implies that this particular event has been read out from the Fee to the D-RORCs.
Hence, the occupied buffer is now freed.

Every time an LO trigger (L1a trigger for TPC) is issued, the BusyBox increments a buffer
count register and decrement the same register if the event IDs from the D-RORCs compared
with the one in the BusyBox match. Depending on how big the buffer size is in the Fee, see
section 2.2.1, the busy is asserted to the LTU when the buffer count register is full.

In addition to set the busy when buffers are full, there are three other busy conditions: 1)
During the reception of triggers, 2) Problem with the connection to the LTU or issuing of a
global reset from CTP, and 3) After an L1 trigger the busy is set for a given time interval. The
last condition is a past future protection for the TPC detector, and the fact that electrons
starting from the central plane in the TPC, take about 88 us to reach the end plates where they
are detected by the Fee. The purpose of this time interval is to make sure that pile-ups
corrupting the data are avoided.

3 There is one BusyBox for each of the four sub-detectors.
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4.2 Design

The main components of the BusyBox are the FPGA(s), the DCS board, busy outputs and RJ-
45 connectors. With some minor adaptation the BusyBox takes advantage of reuse of existing
technology in ALICE.

The DCS board is an embedded computer running Linux, and was originally designed for use
in the TRD detector. Due to its versatility, it is now adopted by the BusyBox. For
communication between the DCS board and the FPGA(s) a modified version of the RCU-bus
is used. To decode trigger information from the LTU the BusyBox’s FPGA(s) also use the
RCU Trigger Receiver logic described in chapter 2.

DCS board

Busy out T

Figure 4-1: Picture of BusyBox (TPC version with two FPGAS).

The BusyBox design is implemented in the Virtex-4 (XC4VLX) FPGA from Xilinx with the
FF1148 package of the type ball grid array. This FPGA has 640 general purpose I/Os which
can be configured with the LVDS 2.5 standard. To communicate with one D-RORC, the
BusyBox needs to configure 4 1/0s with LVDS. The TPC detector utilizes 216 D-RORCs,
which means the BusyBox needs to configure 864 I/Os in total with LVDS. Thus, two FPGAs
are implemented for the TPC configuration. The other detectors use less than 120 D-RORC:s,
and they have only one FPGA.
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4.2.1 FPGA, Firmware and VHDL

FPGA

FPGA (Field-Programmable Gate Array) is a semiconductor device that can be configured
after it is manufactured. A hardware description language is normally used to specify how the
chip will work. FPGAs contain arrays of programmable logic blocks and reconfigurable
interconnects that allow the blocks to be wired together and build a digital system.

It has become increasingly more popular than their fixed ASIC counterparts. Advantages
include shorter time to marked, ability to re-program in the field to fix bugs, and lower non-
recurring engineering costs.

VHDL

VHDL (Very-High-Speed-Integrated-Circuit Hardware Description Language) is a HDL
language originally developed for the US Department of Defence and is now an IEEE
standard. VHDL is a data flow language, and can describe concurrent systems. It is used as a
design-entry language for FPGAs in electronic design automation of digital circuits. The key
advantages of VHDL when used for system design, is that it allows the behaviour of the
system to be described and verified before it is synthesized into real hardware.

VHDL Register Transfer Level (RTL) Place and Route (P&R) FPGA

library IEEE; 10
use |EEE.std_logic_1164.all;

entity full_adder is .
port(a,b,c_in:ins ogic; :
sum,c_out : out std_ulogic); b L/

end full_adder; C

s
architecture structural of :> :>
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Figure 4-2: lllustration shows the basic operations from VHDL code to
firmware on an FPGA.

The VHDL code is synthesized to a netlist before the code is implemented as a digital system
on an FPGA. A Xilinx FPGA has an array of CLBs (Complex Logic Blocks) and each block
has an LUT (LookUp Table), a D-flipflop and a 2-to-1 multiplexer. The LUT is like a small
RAM with typically 4 inputs, and can implement any logical gate with up to 4 inputs. The
gates and registers in the netlist are translated to the LUTs. The location of the instantiated
CLBs are mapped before they are placed and connected together. Finally, a bit-file is
generated and the design can be programmed into the FPGA. Figure 4-2 illustrates the basic
operations discussed in this section.
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4.2.2 Development and Code Organization

The VHDL code for the BusyBox is written in Xilinx’s ISE and tested in Mentor Graphic’s
QuestaSim.

The code is organized with a top module connecting eight sub-modules together. All the
source files are listed and explained in detail in Appendix D. TCL scripts sets up the project
for both ISE and QuestaSim.

A SVN repository has been used as a version control system for the BusyBox project to track
changes during firmware development. If errors were done, it was possible to revert to
previous working versions.

4.3 BusyBox Firmware Functionality

The BusyBox firmware can be divided into three functionality categories: 1) Trigger
interpretation, 2) Event verification, and 3) Busy control. The Trigger Receiver module is
responsible for trigger interpretation and L2a, L.2r or L2 timeout triggers are recognized from
valid trigger sequences. The data from the recently finished trigger sequence is stored in the
CDH FIFO, see Figure 2-11.

The FIFO has a data available signal to the Event ID Verification module that is flagged when
the Trigger Receiver has generated the CDH header. The Event ID Verification module,
Transmitter module and Receiver module, are included in the event verification process. The
Event ID Verification module reads out the CDH header and extracts the orbit ID and
bunchcount ID, named event ID. The Controller, a sub-module in the Event ID Verification
module, will command the Transmitter module to send a request to the D-RORC:s for their
event ID.

A D-RORC will reply to the request with the latest event ID it has received from the RCU,
and send this to the Receiver module in the BusyBox. The time it takes for the D-RORCs to
read out an event from the Fee varies, and the Transmitter module will keep sending request
to the D-RORC:s until all have answered. If all received event IDs from the D-RORCs
matches the event ID extracted by the Trigger Receiver module, all event data has been read
out from the Fee buffers to the D-RORCs. Hence, the occupied buffer is now freed.

The busy control is done by the Busy Controller module, and this is just an OR function of
four processes. The busy parameters are: TTCrx ready from the TTC system, the busy from
the Trigger Receiver module, calculation of free buffers in the Fee and the timeout counter for
post future protection. The calculation of free buffers in the Fee is based on housekeeping
triggers and valid events. The counter increments 1 for an LO trigger (L.1a trigger for TPC),
decrements 1 for L2a/L.2r triggers and verified events. So if the counter is incremented to 4 or
8 (depending on how many multi event buffers are configured in the ALTRO chip) the Busy
Controller will assert the busy signal to the TTC system.



The DCS Bus Arbiter and Address Decoder module handles communication between the
BusyBox and DCS card, the RX Memory module stores D-RORC messages and the Control
and Status module has information about the registers and control signals available in the

BusyBox.

4.4 Firmware Structure

The overall structure of the firmware is best described with help of a structure chart. It shows

the relationship between the main firmware modules. The different modules are represented

by rectangles, and arrow lines between them represent data flow. Thick lines are buses and

thin lines are single signals. The structure chart for the BusyBox firmware is shown in Figure

4-3.
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Figure 4-3: Overall structure of firmware modules in BusyBox.

4.4.1 Trigger Receiver module

As mentioned earlier, the Trigger Receiver module in the RCU decodes the trigger

information. It is also used in the BusyBox for the same purpose. The Trigger Receiver

module needs the adoptions discussed in section 2.5 before it can be used in the BusyBox.
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The Trigger Receiver module asserts a local busy signal and trigger signal to the Busy
Controller module during the reception of a valid trigger sequence. A valid trigger sequence
ends with an L2 Accept, L2 Reject or an L2 timeout trigger and a CDH header is generated in
the module accordingly.

The CDH header is stored in a FIFO in the Trigger Receiver module, and contains the event
ID used by the Event ID Verification module to verify that Fee buffers have been read out to
the D-RORCs. The CDH FIFO has counters linked to the Event ID module which is
incremented when a CDH header enters the FIFO. The counters are used by the Event ID
Verification module to extract the event ID.

4.4.2 Busy Controller module

This module decides when to assert the busy signal to the LTU based on triggers from the
Trigger Receiver module and event information from the Event ID Verification module. A
TTCrx ready signal is added to the BusyBox since each sub-detector should report busy if
there is a physical problem with the connection to the LTU, or if the CTP is issuing a global
reset.

By incrimination or decrimination of the buffer count register, based on triggers and event
verification signals, the Busy Controller module keeps track of the Fee buffers without having
direct contact with the Fee itself. The buffer count register is incremented after a LO trigger
(L1 for TPC) and decremented when an event is validated, L2 Reject trigger or L2 timeout is
generated, see Figure 4-4.
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Figure 4-4: Flowchart of Fee buffer count process.

4.4.3 DCS bus Address and Arbiter module

The DCS bus arbiter and address decoder module, uses an asynchronous 16 bit data/address
handshake protocol for communication between the FPGA and DCS board. This protocol is
used to read and write registers in the BusyBox firmware. The MSB of the 16 bits DCS bus
address selects which FPGA to communicate with. Then each firmware module can be
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accessed with the next three bits and the remaining bits are used to target specific sub-module
registers.

4.4.4 Control and Status module

This module has information about register and control signals in the BusyBox available for
the Fee Server using the DCS bus arbiter and address decoder module as an interface. One
register in particular, the CHEN register (CHannel ENable), is important and can be used to
enable and disable the individual serial communication channels with the D-RORCs.

The Trigger Receiver module has its own control and status register which mostly holds
information concerning trigger configurations and messages errors.

4.4.5 Event ID Verification module

The Event ID Verification module is the control centre of the BusyBox, and as the name
implies, it verifies the event IDs received from the D-RORCs up against the one it receives
from the LTU. Once the Trigger Receiver has received and validated a trigger sequence it
generates the CDH header and places it in the CDH FIFO ready for the Event ID Verification
module to read it. The FIFO in the Trigger Receiver is constantly monitored by the Event ID
Verification module and the second the CDH header arrives it is read out. The event ID is
extracted and put in the Event ID Queue FIFO.

Event ID Verification module
Controller Transmitter
module
Event Processor '
Event ID
Event ID Comparator
;r;%g;vrer Event ID D-RORC Receiver
module Queue EIDOK register Inbox Buffer module
T Channel
Event ID Verification gate &

CHEN vector

Figure 4-5: Overview of the Event ID Verification module.
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The Controller module, see Figure 4-5, will send requests for the event ID it extracted to all
D-RORC:s enabled in the CHannel ENable (CHEN) register. The module keeps sending
request until all enabled channels have replied with the correct event ID.

The Event Processor increments a Request ID register to synchronize messages in the Inbox
Buffer. Each time a new event ID is requested, the request ID is sent along with the command
type word to the D-RORC:s, see Table 3-2. They will remember this ID, and new event IDs
are not sent to the BusyBox before the Request ID has changed.

A flag is raised to the Busy Controller module when the event ID has been verified, indicating
a valid event (event has been read out from Fee to all active D-RORC:s).

4.4.6 Transmitter module

The Transmitter module sends commands to the D-RORCs. By default it request event IDs
from the D-RORC:s, but the DCS board can send other commands meant for debugging
purposes as well. The Transmitter module is the arbiter between the Event ID Verification
module and the DCS board to avoid communication conflicts. The CHEN vector is used to
select which serial channels to transmit the request on.

Signal to LVDS driver

A A

Transmitter module

Controller

DCS Bus Arbiter and
Address Decoder

'

Message register Masking Vector

module @ * 4 — 4

Event ID Verification Channel register Serial Encoder
module

;

Figure 4-6: Overview of the Transmitter module.

4.4.7 Receiver module

Serial data from the D-RORC:s are handled by the Receiver module and up to 120 single
channels can be implemented in one FPGA. The serial receiver channels are arranged in a
multiplexer architecture with up to 16 serial channels connected to a branch controller, and
up to eight branch controllers connected to a single backbone controller, see Figure 4-7. The
number of serial channels and branch controllers are set with VHDL generics before the
firmware is compiled.



48

Serial Receivers Serial Receivers Serial Receivers
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Figure 4-7: Multiplexer structure of Receiver module.

The reply from the D-RORCs cannot be predicted, and therefore the branch controller scans
through the serial channels for messages that have been decoded, concatenated and checked
for parity errors. The backbone controller scans through all the branch controllers and reads
out the message buffered in each branch controller, and puts them in the D-RORC inbox
FIFO in the Event ID Verification module ready for verification.

The complete message received from the D-RORC:s is forwarded to the RX Memory module
where up to 1024 messages can be stored.

4.4.8 RX Memory

The BusyBox can store up to 1024 D-RORC messages from the Receiver module in the RX
Memory module. Four BRAM modules are instantiated in the FPGA, and can be accessed
from both clock domains. The data words from the Receiver module are 56 bit, and are
written into memory at the address given by a 10 bit counter. The DCS bus is limited to read
16 bit at a time, and needs four read operations to get the whole word from memory. The RX
Memory module can also be written to by the DCS card for testing and verification purposes.

Data from Receiver module (56 bit)

v \ R v

10 bit ¢ Virtex-4 | Virtex-4 | Virtex-4 | Virtex-4
It counter BRAM | BRAM | BRAM | BRAM | 200 MHz

Address generator| Address

16x1024|16x1024|16x1024 | 16x1024 40 MHz

DCS address (11-3) \ MUX

DCS address (1-0) ¢
To DCS bus interface

Figure 4-8: Overview of RX Memory module.
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4.5 Firmware Upgrades

Johan Alme modified the Trigger Receiver module according to a change in the sequence
validation specification requested by the ALICE trigger group. If only orphan messages
arrive, they will kick off a new sequence starting. Earlier this was only done when a L.O or
L1a trigger was detected. The CTP never issues trigger messages without LO or L1a triggers,
but errors can occur. The fix was done in the Sequence Validator module, a sub-module of the
Trigger Receiver module, see Figure 2-10. Investigations of the BusyBox firmware revealed
that it affected the Busy Controller logic.

Three scenarios are possible. 1) Orphan messages arrives the RCU, 2) Orphan messages
arrives the BusyBox, or 3) They both receive orphan messages. In any of the three cases, the
RCU ships the CDH header without event data to the D-RORCs. The BusyBox verification
process is not affected by a trigger sequence with orphan messages. The event valid flag is set
to the Busy Controller after the validation process described in section 4.4.5 has finished. The
Busy Controller logic on the other hand, which is in charge of counting free buffers, relies on
a correct trigger sequence to determine the right numbers of free buffers. So, if no LO/L1a
triggers are sent from the Trigger Receiver module to the Busy Controller module, it will get
the buffer count wrong. It will not increment the buffer count register when orphan messages
arrive, instead the buffer count is decremented when the event valid flag is set, giving an
erroneous value in the register. This is only the case with scenario two and three.

The Sequence Validator flags an include payload on a register if a trigger sequence ends with
an L2 Accept trigger. It is not set if a trigger sequence with orphan messages ends with an L2
Accept trigger. Thus, this payload register is used as a signal in the Busy Controller logic as
part of the other measures taken to prevent erroneous values in the buffer count register.

The solution to the problem is to include a 1 x 16 FIFO in the Busy Controller logic, see
Figure 4-9. The include payload signal is written to the FIFO when the L2 Accept trigger is
set, and the payload signal is read out when the event valid flag is set. The buffer count
register is only incremented if the include payload flag is set.

Include_payload —— | DIN[1:1] DOUT[1:1] ——» Payload

L2a trigger —— » WR_EN RD_EN -«——— Event valid

Figure 4-9: Payload FIFO.
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The payload signal is available one clock cycle after the event valid was flagged. A shift
register is added to shift the event valid signal one time before the payload signal is evaluated
by the buffer count logic.

The original design did not implement a firmware version register which made it very
difficult to distinguish between different versions of the BusyBox firmware, i.e. reverting to a
working version if the new firmware had errors. So, a firmware version register is added to
address 0x2015 starting at version 1.01.
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Chapter 5

Verification and Testing

This chapter discusses the testing done and results achieved. First an introduction to
verification and firmware simulation before the test setup and results are discussed.

5.1 The Verification Plan

5.1.1 Introduction

In a hardware design project, around 70 % of the project development cycle is devoted to
design verification [13]. The consequences for a commercial company of an informal
verification process can result in huge economic losses or a delayed product shipment. The
development of the BusyBox is done by students with little or none experience with hardware
design and verification, which has resulted in ad hoc approaches and lack of specification
documents. This conduct can be justified by the fact that the BusyBox project is not a
commercial product and has little non recurring engineering cost.

There exists no specification plan for the firmware design of the BusyBox that can be used in
a verification plan. Thus, a template specification that describes the design as, e.g.; “The same
thing we did before, but with missing triggers and with these additional features”, is used
instead. It has been a part of this work to work out a BusyBox specification. This is included
in Appendix D.

5.1.2 Verification strategies

The verification strategy has two approaches: 1) Firmware simulation with testbench, and 2)
Hardware test with documentation of operation. The BusyBox is not flawless, and bugs
reported by the users at CERN are sudden loss of firmware configuration and spurious D-
RORC communication.

5.2 Firmware Simulation

5.2.1 Introduction

To simulate a design, an additional code called a testbench is required to mimic the
environment in which the design will reside. The simulator lets the designer see all values of
the internal signals, as well as the external signal in the design on a time scale, by supplying
waveforms to the design. This is an indispensible feature in finding and backtracking bugs
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and errors in the design. The restrictions to the coding style of the testbench are far fewer than
for the design being manufactured.

The testbench for the BusyBox is written in VHDL, but may be written in Verilog, e, Open
Vera or it could also include external data files or C routines. The term “testbench” usually
refers to simulation code used to create a predetermined input sequence to a design, then
optionally to observe the response.

The design under test (DUT) is encapsulated in the testbench like a harness with a completely
closed system: no inputs or outputs going in or out, see Figure 5-1. The verification challenge
is to determine what input pattern to supply the design and what to expect from the output
given a properly working design.

Testbench

Design
L Under ——»
Test

Figure 5-1: Generic structure of a testbench and design under test.

The testbench is not synthesizable and provides the DUT with input signal and clock cycle
(test vectors) similar to the stimuli expected in the real system. The simulator will, when
executed, keep track of all signals and their interactions in time, and the outputs can be
monitored in a waveform viewer.
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5.2.2 Testbench for the Trigger Receiver Module

Serial B

Controller: process p_tb

v

DCS interface

Producer
L1a

A
rcu bus
v \ J
. read_enable
header
-
. DUT. Responder
trigger_receiver
Triggers etc.

Generated messages

Figure 5-2: Testbench for Trigger Receiver Module, from [14]

A sketch of the testbench for the Trigger Receiver Module can be seen in Figure 5-2, where

the Trigger Receiver Module is the Device Under Test (DUT). The DCS interface is added so
that communication with the internal RCU bus structure of the trigger receiver can be used to

forward functions and procedures to and from the DUT. Besides the DUT, there is a Producer

and a Responder module. The Producer module emulates the L1 Accept and Serial B lines.

The Responder module emulates the internal RCU logic interface, and receives the generated

stimulus from the Producer module. The Responder module can then verify the content that is

produced by the Trigger Receiver Module. The Controller (process p_tb) implements

different test cases by using defined procedures in a testbench package.
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5.2.3 Testbench for the BusyBox

Test sequence controller |

D-RORC sim

— DCS interface
model
DUT
BusyBox
firmware
L TTCrx
emulator

Figure 5-3: Testbench for the BusyBox.

The testbench for the BusyBox incorporates much of the same features described in the
Trigger Receiver testbench. It has a controller which can initiate trigger sequences and read
control and status registers through the DCS interface. The D-RORC sim model has the same
serial receiver and transmitter that is implemented in the D-RORC and behaves much in the
same manner as the real D-RORC does. It can handle communication with all 120 channels
on the BusyBox.

5.3 Test Cases

5.3.1 Introduction

In order to verify that all the requirements of an application are met, test cases are used to test
the DUT. A test case is used instead of a direct testbench approach, where individual features
are verified using individual testbenches. The test case approach does a number of tests on the
DUT where the tests are divided into groups or test cases. Figure 5-3 illustrates the idea of a
test case approach. The implemented test cases are described in the following sub-sections.
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Test case 1

Test case 2 \
: Test harness —p DUT

Test case N

Figure 5-4: Typical verification with the separation of the test harness and
the test cases, from [13].

5.3.2 Test cases for the Trigger Receiver Module

The testbench for the Trigger Receiver module has over 30 different test cases to test the
firmware. These tests include running all types of trigger sequences, bit error tests, hamming
error tests, just to mention some.

The Sequence Validation module of the Trigger Receiver has been updated to handle orphan
messages and a new test case has been added to verify that it work. It will test how the
module handles a possible error in a trigger sequence where only orphan messages arrive with
no LO and L1a triggers.

5.3.3 Test cases for the BusyBox

In addition to the test performed on the Trigger Receiver module a set of test cases are added
to test the BusyBox. These tests are run on the BusyBox testbench and cover the functions of
the firmware.

All legal trigger sequences, see Table 5-1, without pre-pulse, are tested along with orphan
messages. It must be verified that the BusyBox can count the Fee buffers and assert the busy
when it is supposed to. An important feature is the event validation process. It must be
verified that the BusyBox can extract the event ID from the CDH FIFO in the Trigger
Receiver module, request the D-RORC to reply on all types of command, see Table 3-2, and
assert the event valid flag if an event has been verified.

5.4 Evaluation of Firmware Simulations

The Trigger Receiver testbench had to be modified to incorporate a trigger sequence with just
orphan messages. The Producer module, see Figure 5-2, is responsible for sending triggers
and messages and was modified to only send L1a and .2a messages. When the changes were
done it could be verified that the Sequence Validator sub-module of the Trigger Receiver
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behaved according to specifications. This means that the include payload flag is not set when
only orphan messages are detected.

A direct testbench approach was used instead of the test cases method to verify the new
changes made to the firmware in the Busy Controller module. This was done before the whole
BusyBox firmware was simulated using the testbench discussed in section 5.2.3.

5.5 Hardware Test

5.5.1 Introduction

Given the fact that the BusyBox is in use and working, but with a few reported errors, a
hardware test is conducted to test and document what is working. So, when changes are done
and new errors are revealed under testing, the hardware test documentation can be used as a
golden reference. The documentation can then tell if the hardware passed this test in a
previous working version, hence, the new fix has to be reviewed and changed.

5.5.2 BusyBox interface to the DAQ System

Busy

Box Fee
D-RORC
LDC

Figure 5-5: Overall architecture of the Data Acquisition System with the
BusyBox interface highlighted, from [1].

Figure 5-5 shows the architecture of the DAQ system in ALICE where the BusyBox interface
is highlighted. In order to test the BusyBox, a TTC system with a CTP and LTU is required,
along with Front-end electronics (Fee) and a Local Data Concentrator (PC) with D-RORCs
and DATE installed.
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Local Trigger Crate

All the detectors in ALICE receive their trigger signals from the ALICE Trigger System
through a standard interface called a TTC partition in the Local Trigger Crate. The TTC
partition consists of a Local Trigger Unit (LTU), and two modules (TTCvi, TTCex), to
generate TTC signals to the detectors. These modules are fitted into a standard full width 6U
VME crate together with a Single Board Computer (SBC). The SBC configures the modules,
oversees the readout of data and controls the detector in stand-alone mode.

TTC TTCmi TTe [ =001 [000 0
partition\ / partition m L
TTC TTC ] ols|x
oartition ¥ CTP ——» partition > SIE|E E
TTC / Rol \ TTC
part|t|on par‘[|t|0n T T T T A T T T

Rack Rack Rack

Figure 5-6: Overview of ALICE Trigger System and one LTC holding the
TTC partition.

In stand-alone mode [12], the LTU can fully emulate the CTP protocol, and can be operated at
a remote site without the CTP rack cluster shown in Figure 5-6. It can emulate all existing
trigger sequences, see Table 5-1. This is all done with the LTU software running on the SBC.

Sequence name Sequence structure
LO LO

L2 accept LO-L1-L2a

L2 reject LO—-L1—-L2r

Table 5-1: List of emulation sequences.
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Front- end electronic

«— FEC —

MY

Figure 5-7: Overview of the Fee setup.

The Front-end electronics consists of four main components; Front end cards (FEC), PCB
backplane, Readout Control Unit (RCU), Detector Control System (DCS) and Source
Interface Unit (SIU). The FECs are connected to the PCB backplane, which is connected to
the RCU motherboard that holds the DCS board and SIU.

Local Data Concentrator

The Local Data Concentrator (LDC), is a PC running Linux with D-RORCs connected to its
PCI bus. DATE (ALICE Data Acquisition and Test Environment) is the software framework
of the ALICE DAQ and is a distributed process-oriented system. It is design to run on
UNIX/Linux platforms connected to an IP network and sharing common file systems such as
NFS. The standard UNIX system tool available for process synchronisation and data
transmission are also used. The DATE system performs different function [1]:

e The LDC (Local Data Concentrator) collects event fragments transferred by the
DLL’s into its main memory and reassembles these fragments into sub-events. It
can also do local data recording in standalone mode.

¢ The GDC (Global Data Collector) collects and puts together all the sub-events
concerning the same physics event, builds the full events and archives them to the
mass storage system.

5.6 Test setup and Implementation

The hardware tests are conducted in the microelectronics lab at the University of Bergen. The
lab is fitted with one TTC partition, an LDC with three D-RORCs and an RCU with Front-
end cards which are used in the test setup, see Figure 5-8.
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Figure 5-8: Complete test setup for BusyBox.

5.6.1 LDC

The LDC uses the Scientific Linux CERN SLC release 4.7 with Red Hat distribution and is
compatible with the PCI-X bus. Three D-RORC:s are installed, but only one is used (s/n
3006), see Figure 5-9. The RCU must have a branch with some Front-end cards connected to
the PCB backplane in order to work in the test-setup.

DRORC s/n 3006

RORC firmware version | v2.15

RORC software version | v5.3.5

RORC driver version v5.3.5

DLL-RORC version v2.1.1.0 (2.125 GB/s)
PCI bus mode PCI-X (100 MHz)
RORC minor 2

RORC channel 0

RORC revision 4

PC drorc.ift.uib.no

Figure 5-9: LDC with three D-RORC:s.

DATE is the software framework for the ALICE DAQ and consists of a set of software
packages. Every data acquisition is controlled by a runControl process, a component of the
runControl system. This system consists of several other processes that must be present when
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running. The runControl process can only take commands from one operator at a time and the
Lock, see Figure 5-10, allows assigning the mastership of the runControl process to the
runControl Human Interface. This has to be done to have full control of the data acquisition,
since DATE allows concurrent, independent data acquisition controlled by multiple
independent runControl processes.

ALLDETECTORS
DAQ = Run Control

HI running on drorc with PID 25580
RC running on drorc with PID 17363

Lock

|Disconnected : 5~ [ Connected ; B | Ready to start |pata Taking|
[Configuration| ——]Run Parameters B S DrocessEs | Syan I
= l _7..] i AFFAIR A EDM . Stop |
Sk | P ‘ HLT: mode A _J [
LDC: Local Recording OFF _I :

T T GDC: eventBuilding OFF J T

RUN NUTER : 61 Run Control Status : |DISCONNECTED

DAQ configuration Run Parameters Data Taking

Figure 5-10: The main runControl window.

Figure 5-10 also shows the three phases; DAQ configuration, Run Parameters and Data taking
to move through before the LDC is ready to take data. Put another way, this is where you tell
DATE to do local data recording in standalone mode as an LDC, and set different run
parameters, e.g. max event size and so on.

5.6.2 BusyBox

The BusyBox is programmed via the SelectMap interface using a programming script on the
DCS board. Another script, bbinit.sh.new?2, sets all the appropriate register values needed to
use the BusyBox in the test-setup.

DCS board version 2.84UiB

DCS board number dcs0055

BusyBox firmware version | 1.0

bbinit script bbinit.sh.new?2

Channel 0

Mounted system (/mnt) kjekspc?.ift.uib.no/ nfs_export/dcscard

Table 5-2: BusyBox test information.
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5.6.3 Fee

The RCU firmware is programmed and configured by running S30rcu-config.sh and
S40configure.sh, which are scripts on the DCS board. The RCU is then configured from the
LDC via the DDL link using an altro-loopback program. Next, the RCU registers are set to
receive CTP triggers and the correct L1 trigger latency.

DCS board version 2.8UiB
DCS boar.d number dcs0031 2CUboard 'Des board PCB
RCU version vi4 - backplts
RCU power 43V
Fee power 3.3V
L1 Latency 0x4006 -
0x104
Trigger Conf.Reg. 0x5102 -
0x1000
altro-loopback version | 0.9

Figure 5-11: Front-end electronics.

5.6.4 LTU

The TTC partition is used in standalone mode to issue L.2a trigger sequences with the CTP
emulator program running on the SBC module. Lemo cables connect the LTU and TTCex
module together, and fibre cables are connected from the TTCex module to the DCS board on
the BusyBox and RCU.

SBC LTU TTCvi TTCex

LTU firmware version b0

LTU software version 1.5.0

Lemo wiring for the TTC partition (b0)

LTU => TTCex
CLK2 BC
Orbit B1
L1 At

Figure 5-12: TTC patrtition
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5.6.5 Testing

It is important to configure the test hardware correct or else it will not work. All the
configurations are done from the LDC. The RCU has to be programmed and configured as
described in section 5.5.3. After the BusyBox has been programmed and initialized,
runControl can be started as DATE user. The CTP emulator is loaded with the L.2a trigger
sequence and the test setup is ready to go. There are a handful of scripts on the LDC, RCU
and BusyBox which are helpful during tests, and are used to read or write several registers at
once. The runControl Data Taking must be stopped and restarted whenever the BusyBox is
reset, or else the D-RORC event FIFO is not reset and will get out of synch with the
BusyBox.

Since the lab only has enough Front-end cards to one RCU, the tests are preformed with one
channel on the BusyBox. Testing the BusyBox involves issuing triggers with the CTP
emulator and check if the event validation takes place, by reading the appropriate registers in
the BusyBox firmware. The LVDS link between the BusyBox and D-RORC is monitored
with an oscilloscope using probes connected to the TP cable link. This can tell if the BusyBox
sends request commands to the D-RORC and if the D-RORC replies on these requests. The
busy output is also monitored when determining the upper trigger rate.

Initial tests of the BusyBox shows that it handles all legal trigger sequences and asserts the
busy signal if the fee buffers are full. The upper trigger rate is determined to be 9 kHz, which
is above the expected trigger rate of 1 kHz from p-p collisions.

5.7 Communication Tests

The BusyBox word has a 4 bit Command type and Request ID, and each is encoded with
Hamming (8:4). The Hamming encoded bits are concatenated to a 16 bit data word before
start, parity and stop bits are added to form a complete message. The BusyBox has four
commands it can send to the D-RORC(s), see Table 3-2. The MSB of the data word is
transmitted first, and the Hamming decoding is preformed on bit 0 and down to bit 7, and to
bit 8 down to 15. The result has to be interpreted from right to left, when measuring with the
oscilloscope, to give the correct result when reading the BusyBox messages.

The D-RORC sends three 16 bit words which are concatenated to one 48 bit message by the
BusyBox, see Table 3-3 for a bit map of the D-RORC message. These words are not
Hamming encoded and have only parity check. The messages are sent with one high bit
period between them which correspond to 25 ns. The MSB of the each D-RORC data word is
transmitted first.

An oscilloscope is used to monitor the communication between the BusyBox and D-RORC
during communication tests. Probes are connected to the transmitting and receiving LVDS
lines to measure the differential signalling to and from the BusyBox.
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First, an L2a trigger sequence is issued using the CTP emulator, and the oscilloscope triggers
on the BusyBox transmission. Figure 5-13 shows parts of a transmitted and received message.
The time it takes the D-RORC to answer varies, but during test the delta time between the two
signals is about 250 ns + 30 ns.

CPprevu _ —+ Poi———
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i . i . € -262.2ns —60.0mV
i —27.30ns 340mv
s mw g ma o mg B ww g A o x| | ® a234.0ns A A
0 Www“'w-.nw N P, cursors Linked _
TP BRI N TN N PR U | DI P R .
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(2 A eyt g W Y A e, o Il Y e a1 8 P v :
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b 5 ‘\ﬁ‘-l‘ i l-,r.wu"ﬂ'f"l‘“ W "'r“;.“:L_u_"!‘ﬁ;i'_‘ﬂn’»'ﬁh\}‘,‘
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Figure 5-13: Screenshot of an LVDS transmission between BusyBox (blue)
and D-RORC (red).

The event ID from the L2a trigger sequence in this example is 0x58CC86B94. The BusyBox
will transmit the Request event ID command and Request ID (0x2) to the D-RORC. The D-
RORC will answer and transmit the Request ID it received from the BusyBox (0x2),
Bunchcount ID and Orbit ID from the Fee, and the D-RORC ID (0x7). The response from the
D-RORC is shown in Figure 5-14, 5-15 and 5-16. From these figures we can see that expected
answer complies with the transmitted message.
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Word(1) 0 -15: 001100011010 0100 (Reverse order)

Request ID: 0010 -> 0x2
Bunchcount ID: 010110001100 -> 0x58C

Figure 5-14: First part of the LVDS message sent from D-RORC.

25ns 500 ns
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Word(2) 0 -15: 1101011000010011 (Reverse order)
Orbit ID: 1100100001101011 -> 0xC86B

Figure 5-15: Second part of the LVDS message sent from D-RORC.
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S182 " Data bit0-15 P S

Word 0 -15: 11100000 00101001 (Reverse order)
Orbit ID: 10010100 -> 0x94
D-RORC ID: 11100000 -> 0x7

Figure 5-16: Third part of the LVDS message sent from D-RORC.

S1: Start bit 1
S2: Start bit 2
P: Parity bit
S: Stop bit

S1: Start bit 1
S2: Start bit 2
P: Parity bit
S: Stop bit

S1: Start bit 1
S2: Start bit 2
P: Parity bit
S: Stop bit
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The four BusyBox Command types are documented in Figure 5-17, 5-18, 5-19 and 5-20. See
Table 3-2 for description of the Command types.

25ns 500 ns

)

i
AR ARARRAARAEANARAN A A

S1 82 Data bit 0 - 15 P S

Word 0 -15: 00000000 01010101 (Reverse order)
Command type: 0100
Request ID: 0

Figure 5-17: Overview of the Request event ID (0100) command transmitted
from the BusyBox. Red digits are data and black digits are parity from the
Hamming (8:4) encoding.
25ns 500 ns

N

'

: : i : S1: Start bit 1
: S2: Start bit 2
) . : : - . P: Parity bit
. , | | | | . . S: Stop bit
ol bbbl L wﬂv{

S1 82 Data bit 0 - 15

Word 0 -15: 00000000 10110100 (Reverse order)
Command type: 0101
Request ID: 0

Figure 5-18: Overview of the Resend last message (0101) command
transmitted from the BusyBox. Red digits are data and black digits are parity
from the Hamming (8:4) encoding.
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I : : E P: Parity bit
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000000001‘1 ‘1‘

S1 82 Data bit 0 - 15

m0§

Word 0 -15: 00000000 11001100 (Reverse order)
Command type: 0110
Request ID: 0

Figure 5-19: Overview of the Force pop event ID (0110) command
transmitted from the BusyBox. Red digits are data and black digits are parity
from the Hamming (8:4) encoding.

25ns 500 ns
N
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. MM'-; sttt I | KL

— g S: Stop bit
il
0|0 | '
S1 82 Data bit 0 - 15 P S

Word 0 -15: 00000000 11101101 (Reverse order)
Command type: 0111
Request ID: 0

Figure 5-20: Overview of the Force request ID (0111) command transmitted
from the BusyBox. Red digits are data and black digits are parity from the
Hamming (8:4) encoding.

5.8 Evaluation of Hardware Tests

All the basic tests conducted so far, revealed no errors. The BusyBox handles all legal trigger
sequences, see Table 2-1, i.e. the Trigger Receiver module decodes triggers and the Busy
Controller module keeps track of free buffers. The busy is asserted if the Fee buffers are full.
After an L.2a trigger sequence the Event Validation module reads out the event ID from the
Trigger Receiver, and send a request to the D-RORC. The reply from the D-RORC is
validated and the event valid flag is set. The LVDS communication has been documented, and
it can be confirmed that the D-RORC messages are written to the RX Memory module.
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Chapter 6

Summary, Outlook and Conclusion

This chapter discus the work covered by this thesis and some of the experiences that has been
gained.

6.1.1 Summary

The result of this master thesis is a specification document for the BusyBox, a working
hardware test setup and a new firmware version for the BusyBox. The specification document
describes the BusyBox firmware and related hardware in detail, along with a BusyBox user
guide. The test setup has the necessary equipment to test the basic functionalities of the
BusyBox. Beyond that, a firmware version which incorporates a new trigger specification has
been developed and simulated with VHDL testbenches. I have also updated the IFT Nuclear
Physics group’s wiki page, which is chosen as a location for a knowledge base for the
BusyBox.

Prior to my work with the BusyBox, former master student Magne Munkejord, developed the
firmware and a communication protocol for the BusyBox. It was assembled and put into
service at CERN in 2008. Later, some problems were discovered and the most important
problem was that the BusyBox went into saturation when the trigger rate passed 500 Hz. The
expected TPC event rate for p — p collisions is 1 kHz, i.e. the BusyBox became the bottle neck
and halted further triggers during tests.

Magne Munkejord has done a great job developing the firmware in such a short time, but at
the expense of documentation and production testing. The topic of this thesis has primarily
been to document and debug the BusyBox firmware. So, I started writing a combined
specification document and user guide, and during this phase the saturation problem was
solved. More bugs were reported due to inadequate testing; loss of configuration in the
BusyBox firmware and spurious D-RORC communication.

The BusyBox had only been tested with one sector of the TPC (6 RCUs) in the RCU lab at
CERN, and the loss of configurations occurred when all sectors of the TPC (216 RCUs)
where in use. When both A and C sides of the TPC are used, the loads on the BusyBox’s
FPGAs are at the highest. The FPGAs have to be programmed on power up, and either the
voltage regulators or power supply cannot provide enough power to the FPGAs, hence the
configuration is lost. We could not verify this since the C side is not active due to
maintenance.

See Appendix B for a description of the problem and the proposal we wrote for an enhanced
start up procedure for the BusyBox. The problem was first handled by a work-around to take
data at CERN before a solution was found. Csaba Soos, who design the D-RORC firmware,
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fixed the problem which was related to a reset issue concerning the D-RORCs firmware. The
firmware works in two clock domains. During a reset before a test run in ALICE, the faster
clock would miss the assertion of the reset signal by the slower clock in the D-RORC
firmware, resulting in de-synchronization between some D-RORCs and the BusyBox.

A test setup was installed in the microelectronics lab here in Bergen to debug and test the
BusyBox. This included a PC with DATE, D-RORCs, Front-end electronics and a TTC
partition. The test setup was also used to test and document the basic firmware functionalities
of the BusyBox. Installing the test setup proved to be more difficult than expected and
required a lot of expertise, not only on the different Front-end electronics, but also on the
DATE software and the TTC partition.

Johan Alme updated the Trigger Receiver module for the RCU and BusyBox, and we
therefore had to test that it worked according to the specifications. The update was requested
by the ALICE trigger group based on a possible error that can occur in during a trigger
sequence, which could result in orphan trigger messages. Studies of the BusyBox firmware
showed that this would affect the counting of free Fee buffers in the Busy Controller module.
I upgraded the BusyBox firmware so it can handle orphan trigger messages.

6.1.2 Outlook

The BusyBox power supply must be tested when the C side of the TPC is up and running.
This will show if inadequate power supply is the cause of configuration loss in the FPGAs.

The new update I made to the firmware was tested and simulated with a VHDL testbench
develop by Magne Munkejord. It was very difficult to interpret the results from these tests,
and I started to design a new testbench which is more similar to the Trigger Receiver
testbench. It must be considered to continue the development of this new testbench. The basic
functionalities of the new firmware must also be tested.

6.1.3 Conclusion

The BusyBox is the Achilles' heel of the ALICE DAQ system, which relies on a BusyBox
that is working without a hitch. It is a fairly complicated system which resides in an even
more complex system. Thus, it is important to have a BusyBox that is well documented, easy
to understand and test if bugs are discovered.

For the first time here at IFT in Bergen, we have a full test setup for the BusyBox system, and
initial test shows that the BusyBox is stable and works reliable. The first runs with the LHC
beam will give designers of the ALICE system information on error situations that can be
expected, and changes may occur to the BusyBox design.

I am confident that the work we have done in this thesis will ease the process of future
firmware upgrades and testing of the BusyBox.
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Appendix A

A.1 List of Abbrevations

ADC
ALICE
ALTRO
ASIC
BC
BRAM
CERN
CHD
CHEN
CLB
CTP
DAQ
DCM
DCS
DDL
D-RORC
EIDOK
EMCal
FEE
FIFO
FMD
FSM
FPGA
HLT
JTAG

Analog to Digital Converter

A Large Hadron Collider
ALICE TPC ReadOut
Application-Specific Integrated Circuit
Bunch Crossing

Block Random Access Memory
Conseil Européen pour la Recherche Nucléaire
Common Data Header

CHannel ENable

Complex Logic Block

Central Trigger Processor

Data Acquisition system

Digital Clock Manager
Detector Control System
Detector Data Link

Data ReadOut Receiver Card
EventID OK

Electromagnetic Calorimeter
Front End Electronic

First In First Out

Forward Multiplicity Detector
Finite State Machine

Field Programmable Gate Array
High Level Trigger

Joint Test Action Group
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LED
LHC
LSB
LTU
LVDS
MSB
NRZ
PASA
PCB
PHOS
PISO
QGP
RCU
RORC
TCP/IP
TOF
TP
TPC
TRD
TTC
UiB
VHDL
VHSIC

Light Emitting Diode

Large Hadron Collider

Least Significant Bit

Local Trigger Unit

Low Voltage Differential Signaling
Most Significant Bit

Non Return to Zero

Preamplifier and Shaper ASIC
Printed Circuit Board

PHOton Spectrometer

Parallel In Serial Out

Quark Gluon Plasma

Readout Control Unit

Read Out Receiver Card
Transmission Control Protocol/Internet Protocol
Time Of Flight

Twisted Pair

Time Projection Chamber
Transition Radiation Detector
Timing, Trigger and Control
University of Bergen

VHSIC Hardware Description Language

Very High Speed Integrated Circuit
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Appendix B

Proposal for an enhanced start-up procedure for the
BusyBox

Problem

In some cases, the DRORC and the BusyBox get out of sync. Issuing the reset on the DRORC
and then on the BusyBox, breaks the communication on some of the channels, thus we get
permanently busy.

Description of problem

After upgrading the DRORC firmware on Friday the 13th 2009 at P2, each time when a run
started one or more readout channels got stuck, and the busy was asserted by the BusyBox.
Blocked channels were always randomly placed amongst the selected ones, and the possibility
of broken cables can therefore be excluded.

BB/DRORC communication

The BusyBox and DRORC:s have queues with event IDs. After the BusyBox receives an
event ID from TTC, it sends a request to all DRORCs and they answer with the first event ID
in their queue. If the event ID from the DRORCs matches the one from the BusyBox, it
implies that the event has been read-out to DAQ, and that the event data buffers occupied in
corresponding Fee cards are freed. To keep all the queues synchronized (BusyBox and
DRORC), the BusyBox generates a Request ID each time it pops a new ID from the queue of
event IDs received from TTC. The Request ID is included in the requests that are sent to the
DRORC:s. The DRORC will remember the Request ID from the last request sent from
BusyBox to DRORCs and compare this with the Request ID in the present request. If the IDs
match it implies that the BusyBox has not popped an event ID and neither should the
DRORC. If the IDs does not match it implies that the BusyBox is now requesting the next
event ID.
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Command type Bit Code Description

Request Event ID 0100 Request an Event ID from the D-RORC.

Resend last message 0101 Command the D-RORC to re-transmit the last message sent.

Force pop Event ID 0110 Command the D-RORC to pop one Event ID from its local
queue.

Force Request ID 0111 Command the D-RORC to store the attached Request

Query Event ID 1000 Request an Event ID, if any, from the D-RORC, but the D-
RORC should not pop from its local queue

Reset Event ID 1100 Command the D-RORC to discard all events from its local
queue

Table 6-1: BusyBox commands. Proposed new commands are shown in red.

Initialization / Synchronization at start of a new run

If the DRORC:s for some reason are not synchronized with the BusyBox, for example if a
DRORC has not been reset properly before a run is started we will get into trouble. The
proposed enhancement of the BusyBox-DRORC communication introduces a query and a
reset command in addition to the request-ID command. It is a topic for discussion if we want
to query the DRORC before an eventual reset is issued or if the BusyBox should just send a
reset/init command at the start of each run.

Normal case

After normal initialization of the BusyBox and the DRORC:s, the Request ID, Bunch Count
ID and Orbit ID are 0 (TBC). The BusyBox will start by sending a broadcast command,
“1000”, to the DRORC:s, and expect in response that all DRORCs return Request ID, Bunch
Count ID and Orbit ID with value 0. The BusyBox then marks all channels as OK and is
ready for operation.

Abnormal scenario 1

After the initialization of the BusyBox and the DRORC:s, the Request ID, Bunch Count ID
and Orbit ID are unequal to 0. The BusyBox will start by sending a broadcast command,
“10007, to the DRORC:s, and the response is not all 0. The BusyBox will then notify the DCS
and a decision can be made on how to proceed.

Abnormal scenario 2

As in scenario 1, the response from the DRORC:s is not all 0. The BusyBox can then proceed
with issuing a “Reset Event ID” command. The expected response is again that all DRORCs
return Request ID, Bunch Count ID and Orbit ID with value 0. If any results differ from O the
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BusyBox will notify the DCS and a decision can be made on how to proceed. Else, the
BusyBox will mark all channels as OK and is ready for operation.
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Appendix C

Test Setup
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Front-end cards with RCU, DCS and SIU.

2 TTC partition.

3 Test setup with LDC, Fee and BusyBox.

4 LDC with D-RORCs and DATE installed

5 D-RORCs connected to the PCI bus inside

the LDC.



78




79

Reference Documents

10.

I1.

12.

13.

14.

CERN Public web site. European Organization for Nuclear Research,
http://public.web.cern.ch, (2008).

Collaboaration, A., Journal of Physics G: Nuclear and Particle Physics. ALICE:
Physics Performance Report, Vomume II, CERN, Switzerland, (2006).

ALICE TPC web site. ALICE Time Projection Chamber (TPC)
http://aliceinfo.cern.ch/TPC/index.html, (2008).

Hans Muller's web site. Alice PHOS Electronics, http://hmuller.web.cern.ch/hmuller/,
(2008).

Christensen, C.H., ALICE Forward Multiplicity Detector, PhD Thesis. Niels Bohr
Institute, University of Copenhagen, Denmark, (2007).

ALICE EMCal web site. Electro Magnetic Calorimeter (EMCal)
http://rhic30.physics.wayne.edu/, (2008).

Rossebg, A., Busy-logikk for ALICE TPC, MSc Thesis. Department of Physics and
Technology, University of Bergen, Norway, (2006).

Munkejord, M., Development of the ALICE Busy Box, MSc Thesis. Department of
Physics and Technology, University of Bergen, Norway, (2007).

Alme, J., Firmware Development and Integration for ALICE TPC and PHOS Front-
end Electronics, PhD Thesis. Department of Physics and Technology, University of
Bergen, Norway, (2008).

ALICE, Technical Proposal for A Large Ion Collider Experiment at the CERN LHC,
198. http://doc.cern.ch//archive/electronic/other/generic/public/cer-000214817.pdf,
(1995).

L. Musa, J.B., N. Bialas, R. Bramm, R. Campagnolo, C. Engster, F. Formenti, U.
Bonnes, R. Esteve Bosch, U. Frankenfeld, P. Glassel, C. Gonzalez, H.-A. Gustafsson,
A. Jimenez, A. Junique, J. Lien, V. Lindenstruth, B. Mota, P. Braun-Munzinger, H.
Oeschler, L. Osterman, R. Renfordt, G. Riischmann, D. Rohrich, H.-R. Schmidt, J.
Stachel, A.-K. Soltveit, K. Ullaland, IEEE Xplore. The ALICE TPC Front End
Electronics, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01352697, (2003).

D. Evans’S.F., G.T. Jones, P. Jovanovic, A. Jusko, L. Kralik, R. Lietava, L. géndor, J.
Urban, O. Villalobos-Baillie, The ALICE Central Trigger System, Article. (2008).

Bergeron, J., Springer. Writing Testbenches: Functional Verification of HDL Models,
Second Edition, (2003).

Alme, J., TTC receiver requirement specification_v1.2.doc, Digital module
requirement specification. (2008).



80

15.  Microelectronics group, VHDL Guidelines and Coding Rules, University of Bergen
Department of Physics and Technology, (2006), internal note.



