
1

Document name: User Guide BusyBox

Revision: 1.0

Date: 2009 03.06 15:15

Author: Rikard Bølgen

1 Block diagram BusyBox

Features

• Decoding of serial B and L1a line

• CDH FIFO

• Event ID extractor

• D-RORC communication

• Event ID verification

• Busy signal indicating when Fee buffers are full

• BRAM module to store up to 1024 D-RORC messages

2

3

Contents

CONTENTS ... 3

PREFACE ... 7

1 DOCUMENT CONTROL .. 9

1.1 Revision History .. 9

1.2 Firmware Version .. 9

1.3 References .. 9

2 MOTIVATION .. 11

3 PROJECT SETUP ... 13

3.1 Project Files ... 13

3.2 Software ... 14

4 EXTERNAL INTERFACE .. 15

4.1 Generic interface... 15

4.2 Signal interface ... 15

5 REGISTER INTERFACE ... 17

5.1 BusyBox Register Interface.. 17

5.2 Trigger Receiver Module Register Interface .. 18

5.3 TPC Channel Register Interface ... 21

5.4 BusyBox Channel Layout ... 23

6 SYSTEM OVERVIEW .. 25

7 BUSYBOX FIRMWARE .. 27

7.1 Introduction .. 27

7.1.1 An intuitive explanation of how the BusyBox firmware works .. 27

7.1.2 VHDL Entity Hierarchy .. 29

7.2 BusyBox FPGA Modules .. 29

7.2.1 Entity BusyBox FPGA Modules ... 29

4

7.3 BusyBox Top module ... 30

7.3.1 Entity BusyBox Top module ... 30

7.4 DCS Bus Arbiter and Address Decoder ... 31

7.4.1 Entity DCS bus arbiter and address decoder .. 32

7.5 Receiver Module ... 32

7.5.1 Receiver Module VHDL Entity Hierarchy .. 33

7.5.2 Entity Multi Channel Receiver module .. 34

7.5.3 Entity Single Channel Receiver ... 34

7.5.4 Entity Serial Decoder .. 35

7.5.5 Entity Branch Controller ... 36

7.5.6 Entity Backbone Controller .. 36

7.6 Transmitter Module .. 37

7.6.1 Transmitter module VHDL Entity Hierarchy ... 38

7.6.2 Entity Transmitter module ... 38

7.6.3 Entity Serial Encoder .. 40

7.6.4 Entity PISO (Parallel In – Serial Out) ... 40

7.7 RX Memory Module .. 41

7.7.1 Entity RX Memory Module ... 41

7.8 RX Memory Filter Module ... 42

7.8.1 Entity RX Memory Filter Module.. 42

7.9 Trigger Receiver Module ... 42

7.9.1 Entity Trigger Receiver Module .. 44

7.10 Event ID Verification Module .. 45

7.10.1 Event Id Verification VHDL Entity Hierarchy ... 46

7.10.2 Entity Event Validator .. 46

7.10.3 Entity Trigger EventID Queue .. 47

7.10.4 Entity EventID Extractor .. 47

5

7.10.5 Entity Event ID Control .. 48

7.10.6 Entity Event ID Processor .. 50

7.11 Busy Controller Module .. 51

7.11.1 Entity Busy Controller Module .. 51

7.12 Control and Status Registers ... 52

7.12.1 Entity Control and Status Register .. 52

8 BUSYBOX HARDWARE ... 55

8.1 PCB ... 55

8.2 Description Details .. 56

8.2.1 Led Indicators ... 56

8.2.2 LVDS ... 56

8.2.3 Mezzanine card for RJ-45 connectors .. 56

8.2.4 FPGA, SelectMAP and JTAG.. 57

8.2.5 Voltage Regulators and Power Supply ... 57

9 BUSYBOX DCS BOARD .. 59

9.1 Communication with the DCS board ... 60

9.2 Setting up DCS board Firmware to use with BusyBox .. 60

10 THE BUSYBOX COMMUNICATION PROTOCOL... 61

10.1 Introduction ... 61

10.2 Physical Layer ... 61

10.2.1 LVDS ... 61

10.2.2 Twisted Pair and RJ-45 ... 62

10.3 Message Formats.. 62

10.4 Transmission .. 63

11 BUSYBOX USER GUIDE ... 67

11.1 Xilinx ISE and QuestaSim files ... 67

6

11.2 Introduction ... 67

11.2.1 Project Setup .. 67

11.3 Hardware Setup .. 68

11.4 Logging on to the DCS board ... 68

11.5 RCU Shell .. 69

11.6 Programming the FPGA .. 69

11.7 Configuring the Firmware ... 70

11.8 Monitoring the BusyBox registers... 70

11.9 Resetting the BusyBox .. 70

11.10 CTP Emulator .. 70

7

Preface

The BusyBox is an FPGA based system developed at the University of Bergen. The first of

three development phases was done by Anders Rossebø and Bjørn Pommeresche. He

designed the BusyBox hardware including the 19” rack case which holds all the electronics.

Then Magne Munkejord developed part of the firmware and PhD student Johan Alme

contributed with the Trigger Receiver Module to make the firmware complete. Test and

upgrades of firmware was done by Rikard Bølgen.

This User Guide is about the whole BusyBox system. The intention is to give users and future

designers an intuitive understanding of the BusyBox. The first part of this user manual is an

overview of the BusyBox. Hardware, Firmware, DCS board and communication systems will

be discussed. The second part is how to interact with the BusyBox; How to program,

read/write registers and to test the hardware.

For more information related to the BusyBox, check out the wiki at:

https://wikihost.uib.no/ift/index.php/Busy_Box_and_related

8

9

1 Document Control

1.1 Revision History
Revision
number

Revision date Summary of changes Author

1.0 03.04.09 N/A Rikard Bølgen

1.2 Firmware Version
Package Version

Firmware BusyBox 1.01

Trigger Receiver Module 1.3

DCS 2.84UiB

1.3 References
Ref. No. Doc. Name Rev/Rev date Title

01 master_thesis_magne_munkejord.pdf October 2007 Development of the

ALICE Busy Box

02 TTC receiver requirement

specification_v1.2.doc

v0.12, 12. june 2008 TTC receiver

requirement

specification

03 Anders_Rossebo.pdf 2006 Busy-logic for ALICE

TPC

10

11

2 Motivation

The scope of this combined technical paper and user guide will be to collect all the

information necessary to understand, use and modify the BusyBox.

ALICE is one of four large detectors situated at the collision points in the Large Hadron

Collider (LHC) at CERN. The BusyBox is used by four of ALICE’s sub-detectors: Time

Projection Chamber (TPC), Photon Spectrometer (PHOS), Forward Multiplicity Detector

(FMD) and Electromagnetic Calorimeter (EMCal)

Triggers initiate data readout from ALICE’s sub-detectors and are received by the DCS board

via an optical cable interface. The triggers and associated data are routed from the TTCrx

ASIC on the DCS board to the BusyBox FPGA(s). Here, the L1a and Serial B line raw data is

decoded by the Trigger Receiver firmware module.

Every time a trigger sequence starts the Fee starts buffering data, i.e. a buffer in the Fee is

used. A valid trigger sequence ends with an L2a trigger and the event data along with the

event ID is sent to the D-RORCs.

The purpose of BusyBox is to let the Central Trigger Processor (CTP) know when the Fee’s

buffers are full by asserting a busy signal which prevents further issuing of triggers. The

BusyBox and D-RORCs receives a unique event ID from the Fee after an event. After a valid

trigger sequence ends the BusyBox will ask the D-RORCs if they have received the same

event ID as the BusyBox did. If they do not reply with the same ID it means data has not been

shipped from the Fee to the D-RORC, hence, the buffer in the Fee still holds event data.

The Fee buffers can hold 4 or 8 events and the BusyBox keeps track of free buffers. The busy

is asserted if the buffers are full.

Interaction with the BusyBox is done through the DCS board, either via Ethernet or UART.

12

13

3 Project Setup

3.1 Project Files

The complete design is checked into the SVN Repository
1
, under the folder /trunk/. The

Trigger Receiver module uses CVS Repository
2
, under /vhdlcvs/trigger_receiver/vhdl/. Any

updates for that module will be uploaded to that Repository.

File Folder Description

busybox_fpga1.bit /busybox_files Bit file to programme
FPGA 1

busybox_fpga1_solo.bit /busybox_files Bit file to programme
FPGA 1

busybox_fpga2.bit /busybox_files Bit file to programme
FPGA 2

fpga2_dummy.bit /busybox_files Bit file needed to
programme just one
FPGA

busybox_fpga1.bit /ISE_projects/busybox_fpga1 -
project_setup.tcl /ISE_projects/busybox_fpga1 TCL script to set up ISE

project for FPGA 1 (TPC)
busybox_fpga1_solo.bit /ISE_projects/busybox_fpga1_solo -
project_setup.tcl /ISE_projects/busybox_fpga1_solo TCL script to set up ISE

project for FPGA 1
(PHOS)

busybox_fpga2.bit /ISE_projects/busybox_fpga2
project_setup.tcl /ISE_projects/busybox_fpga2 TCL script to set up ISE

project for FPGA 2 (TPC)
project_setup.tcl /simulation TCL script to set up

QuestaSim project to
simulate project

backbone_controller.vhd /source
branch_controller.vhd /source
busybox_fpga1.vhd /source
busybox_fpga1_solo.vhd /source
busybox_fpga2.vhd /source
busylogic_pkg.vhd /source
busylogic_top.vhd /source
busylogic_top.vhd.bak /source
busy_controller.vhd /source
busy_controller.vhd.bak /source
ctrl_regs.vhd /source
dcs_arbit_addr_dec.vhd /source
digital_clock_manager.vhd /source
digital_clock_manager.xaw /source
drorc_inbox_buffer.vhd /source
eventidfifo.vhd /source
eventid_control.vhd /source
eventid_extractor.vhd /source
event_processor.vhd /source
event_validator_top.vhd /source
multi_channel_receiver.vhd /source
payload_fifo.vhd /source
piso.vhd /source

receiver_memory_module.vhd /source

1
 http://svn.ift.uib.no/svn/busybox_firmware/

2
 http://web.ift.uib.no/kjekscgi-bin/viewcvs.cgi/

14

File Folder Description

rx_bram.vhd /source
rx_mem_filter.vhd /source
serial_decoder.vhd /source
serial_encoder.vhd /source
serial_rx.vhd /source
single_channel_receiver.vhd /source
single_channel_transmitter.vhd /source
transmitter_module.vhd /source
trigger_eventid_queue.vhd /source
addressed_msg_decoder.vhd /source/trigger_module
broadcast_msg_decoder.vhd /source/trigger_module
counters.vhd /source/trigger_module
event_fifo.vhd /source/trigger_module
fifo_wrapper.vhd /source/trigger_module
hamming_decoder.vhd /source/trigger_module
L1_line_decoder.vhd /source/trigger_module
phase_check.vhd /source/trigger_module
rcu_com.vhd /source/trigger_module
rcu_com_release.vhd /source/trigger_module
sequence_validator.vhd /source/trigger_module
serialb_com.vhd /source/trigger_module
test_pattern_generator.vhd /source/trigger_module
trigger_receiver.vhd /source/trigger_module
trigger_receiver_busy_logic.vhd /source/trigger_module
trigger_receiver_pkg.vhd /source/trigger_module

Table 3-1: Files checked in the SVN repository.

3.2 Software

Editor: Notepad++ v4.5

Simulation: QuestaSim 6.1d

Synthesis and Place and Route for test: Xilinx ISE v10.1

Note: The Core’s may have to be regenerated for a different ISE version or different Xilinx

FPGA series.

15

4 External Interface

4.1 Generic interface
Generic name Type Range Default value Description

fpga_id std_logic - - Identify the current fpga

num_of_cahnnels natural 0 to 119 119 Specifies the number of channels (-1)

that will be instantiated at compile-

time.

num_of_baranches positive 1 to 8 8 Specifies the number of branches at

compile-time.

num_of_modules positive 1 to 8 8 Specifies the number of main

firmware modules in the BusyBox.

cycles_per_bit positive 1 to 9 5 Specifies the number of cycles each

bit will be sampled.

Table 4-1: Description of generic interface.

4.2 Signal interface
Signal name Type Direction Range Sync Description

clock_lvds_P std_ulogic IN - - Reference clock,
positive component
of differential signal.

clock_lvds_N std_ulogic IN - - Reference clock,
negative component.

areset_n std_logic IN - No Asynchronous active
low global design
reset.

serial_in std_logic IN - Falling
edge

Channel B from
TTCrx chip

L1Trig_P std_logic IN - Yes Channel A from
TTCrx chip. Positive
component of
differential signal.

L1trig_N std_logic IN - Yes Negative component
of differential signal.

serial_rx_P std_logic_vector IN 0 to
num_of_channels

No Serial channels
input. Positive
component of
differential signal.

serial_rx_N std_logic_vector IN 0 to
num_of_channels

No Serial channel input.
Negative component
of differential signal.

serial_tx_P std_logic_vector IN 0 to
num_of_channels

Yes Serial channel
output. Positive
component of
differential signal.

serial_tx_N std_logic_vector IN 0 to
num_of_channels

Yes Serial channel
output. Negative
component of
differential signal.

dcs_data std_logic_vector INOUT 15 downto 0 No Bidirectional 16 bit
data bus to/from
DCS board.

dcs_addr std_logic_vector IN 15 downto 0 No Address line for bus
to DCS board.

16

Signal name Type Direction Range Sync Description

dcs_strobe_n std_logic_vector IN - No Active low strobe
signal for bus
interface.

dcs_RnW std_logic IN - No Bus control signal.
Read_not_Write.

dcs_ack_n std_logic OUT - No Bus control signal.
Active low
acknowledgement to
bus master.

intercom_busy std_logic IN - Yes Busy status from
secondary FPGA.

BUSY_1 std_logic OUT - No Busy status output 1.

BUSY_2 std_logic OUT - No Busy status output 2.

lesds std_logic_vector OUT 3 downto 0 Yes Control LEDs on the
main board.

Table 4-2: Description of signal interface.

17

5 Register Interface

All registers for the BusyBox are listed below.

5.1 BusyBox Register Interface

Register Name Address Type

3
 Decription

TX Register[15:0] 0x0001 RW Transmits a message on serial ports when
written to. Bit 7:0 is TX Data. Bit 15:8 gives
channel number in hexadecimal. Any value
greater than the actual number of channels will
result in a broadcast on all channels.

RX Memory1[15:0] 0x1000-
0x1FFF

RW All addresses in range where the 2 LSBs are
‘00’. Holds DRORC message [47:32].

RX Memory2[15:0] 0x1000-
0x1FFF

RW All addresses in range where the 2 LSBs are
‘01’. Holds DRORC message [31:16].

RX Memory3[15:0] 0x1000-
0x1FFF

RW All addresses in range where the 2 LSBs are
‘10’. Holds DRORC message [15:0].

RX Memory4[15:8] 0x1000-
0x1FFF

RW All addresses in range where the 2 LSBs are
‘11’. Holds DRORC channel number.

RX Memory Pointer[11:0] 0x2000 R Value indicates where next message from
DRORC will be written in RX Memory.

Event ID Count[8:0] 0x2001 R Number of Event Ids extracted from triggers and
stored in FIFO.

Current EventID[3:0] 0x2002 R Bit 35:32 of Event ID currently being matched.

Current EventID[15:0] 0x2003 R Bit 31:16 of Event ID currently being matched.

Current EventID[15:0] 0x2004 R Bit 15:0 of Event ID currently being matched.

Newest EventID[3:0] 0x2005 R Bit 35:32 of Event ID most recently received
from triggers.

Newest EventID[15:0] 0x2006 R Bit 31:16 of Event ID most recently received
from triggers.

Newest EventID[15:0] 0x2007 R Bit 15:0 of Event ID most recently received from
triggers.

L0 trigger timeout 0x2008 RW Number of clock cycles 'busy' will be asserted
after an L0 trigger. Note: The busy will not be
deasserted if the buffers are full.

FEE Buffers Available[3:0] 0x2009 RW Configuration register which indicates how
many events can be stored in the buffers on the
FEE.

Halt FSM[0] 0x200A RW When set to ‘1’ the FSM that controls the Event
ID matching will halt in a known state.

Force Event ID Match[0] 0x200B W Writing ‘1’ to this register when the FSM has
been halted will cause the FSM to move on to
the next Event ID.

Re-request Timeout[15:0] 0x200C RW Number of clock cycles (40 MHz domain) to
wait in between sending requests to the
DRORCs.

Current Request ID[3:0] 0x200D R Holds the Request ID the Busy Box uses to
request Event Ids from the DRORCs.

Request Retry Count[15:0] 0x200E R Number of iterations the FSM has made while
trying to match the current Event ID.

Busy Timer[15:0] 0x2010 R Bit 31:16 of register that holds number of cycles
the BUSY has been asserted.

Busy Timer[15:0] 0x2011 R Bit 15:0 of register that holds number of cycles

3
 Legend: W=write, R=read, T= write trigger (not physical registers)

18

Register Name Address Type
3
 Decription

the BUSY has been asserted.

RX Memory Filter[15:0] 0x2012 RW Filters which messages will be stored in RX
Memory by channel number. Bit 7:0 is matching
pattern. Bit 15:8 is matching mask to
enable/disable matching of individual bits.

L0 deadtime offset[15:0] 0x2013 RW Bit 31:16 of register that holds number of cycles
the ‘busy’ will be asserted after a L0 trigger.

L0 deadtime offset[15:0] 0x2014 RW Bit 15:0 of register that holds number of cycles
the ‘busy’ will be asserted after a L0 trigger.

Firmware version 0x2015 R Gives version number in format x.xx

Channel Register[1:0] 0x21XX RW Provides information on status of channel ‘XX’.
Bit 0: ‘1’ receiver for the channel is enabled and
a matching Event ID from this channel is
required. Bit 1: ‘1’ indicates that the current
Event ID has been matched for this channel.
This bit is read only.

Table 5-1: List of registers that can be accessed externally.

5.2 Trigger Receiver Module Register Interface
Register name Address Type

4
 Description

Control[15:0] 0x3000 RW [0] Serial B channel on/off Default: 1
[1] Disable_error_masking 0
[2] Enable RoI decoding 0
[3] L0 support 1
[4:7] (Not Used)
[8] L2a FIFO storage mask 1
[9] L2r FIFO storage mask 1
[10] L2 Timeout FIFO storage mask 1
[11] L1a message mask 1
[12] Trigger Input Mask Enable 0
[13:15] (Not Used)

Control[7:0] 0x3001 R [16] Bunch_counter overflow -
[17] Run Active
 -
[18] Busy (receiving sequence) -
[19] Not Used
[23:20] CDH version
 0x2

Module reset 0x3002 T Reset Module

RoI_Config1[15:0] 0x3004 RW RoI-Definition. Bit 15:0

RoI_Config1[1:0] 0x3005 RW RoI Definition. Bit 17:16

RoI_Config2[15:0] 0x3006 RW RoI Definition. Bit 33:18

RoI_Config2[1:0] 0x3007 RW RoI Definition. Bit 35:34

Reset_Counters 0x3008 T Write to this registers will reset the counters in
the module

Issue_TestMode 0x300A T Debug: Issues testmode sequence. Note that
serialB channel input MUST be disabled when
using this feature.

L1_Latency[15:0] 0x300C RW [15:12] Uncertainty region +- N. default value
0x2 (50 ns)
[11:0] Latency from L0 to L1, default value
0x30D4 (5.3 us)

L2_Latency[15:0] 0x300E RW [15:0] Max Latency from BC0 to L2

4 Legend: W=write, R=read, T= write trigger (not physical registers)

19

Register name Address Type
4
 Description

L2_Latency[15:0] 0x300F RW [31:16] Min Latency from BC0 to L2

PrePulse_Latency[7:0] 0x3010 RW

RoI_Latency[15:0] 0x3012 RW [15:0] Max Latency from BC0 to RoI msg

RoI_Latency[15:0] 0x3013 RW [31:16] Min Latency from BC0 to RoI msg

L1_msg_latency[15:0] 0x3014 RW [15:0] Max Latency from BC0 to L1 msg

L1_msg_latency[15:0] 0x3015 RW [15:0] Max Latency from BC0 to L1 msg

Pre_pulse_counter[15:0] 0x3016 RW Number of decoded pre-pulses.

BCID_Local[11:0] 0x3018 R Number of bunchcrossings at arrival of L1
trigger.

L0_counter[15:0] 0x301A R Number of L0 triggers

L1_counter[15:0] 0x301C R Number of L1 triggers

L1_msg_counter[15:0] 0x301E R Number of successfully decoded L1 messages

L2a_counter[15:0] 0x3020 R Number of successfully decoded L2a messages

L2r_counter[15:0] 0x3022 R Number of successfully decoded L2r messages

RoI_counter[15:0] 0x3024 R Number of successfully decoded RoI messages

Bunchcounter[11:0] 0x3026 R Debug: Number of bunchcrossings

hammingErrorCnt[15:0] 0x302C R [15:0] Number of single bit hamming errors

hammingErrorCnt[15:0] 0x302D R [31:16] Number of double bit hamming errors

ErrorCnt[15:0] 0x302E R [15:0] Number of message decoding errors

ErrorCnt[15:0] 0x302F R [31:16] Number of errors related to sequence
and timeouts.

Buffered_events[4:0] 0x3040 R Number of events stored in the FIFO.

DAQ_Header01[15:0] 0x3042 R Latest received DAQ Header 1 [15:0]

DAQ_Header01[15:0] 0x3043 R Latest received DAQ Header 1 [31:16]

DAQ_Header02[15:0] 0x3044 R Latest received DAQ Header 2 [15:0]

DAQ_Header02[15:0] 0x3045 R Latest received DAQ Header 2 [31:16]

DAQ_Header03[15:0] 0x3046 R Latest received DAQ Header 3 [15:0]

DAQ_Header03[15:0] 0x3047 R Latest received DAQ Header 3 [31:16]

DAQ_Header04[15:0] 0x3048 R Latest received DAQ Header 4 [15:0]

DAQ_Header04[15:0] 0x3049 R Latest received DAQ Header 4 [31:16]

DAQ_Header05[15:0] 0x304A R Latest received DAQ Header 5 [15:0]

DAQ_Header05[15:0] 0x304B R Latest received DAQ Header 5 [31:16]

DAQ_Header06[15:0] 0x304C R Latest received DAQ Header 6 [15:0]

DAQ_Header06[15:0] 0x304D R Latest received DAQ Header 6 [31:16]

DAQ_Header07[15:0] 0x304E R Latest received DAQ Header 7 [15:0]

DAQ_Header07[15:0] 0x304F R Latest received DAQ Header 7 [31:16]

Event_info[11:0] 0x3050 R [0] RoI enabled
[1] Region of Interest announced (=ESR)
[2] RoI received
[3] Within region of interest
[4:7] Calibration/SW trigger type (= RoC)
[8] Software trigger event
[9] Calibration trigger event
[10] Event has L2 Reject trigger
[11] Event has L2 Accept trigger

20

Register name Address Type
4
 Description

Event_error[15:0] 0x3052 R [0] Serial B Stop Bit Error
[1] Single Bit Hamming Error Individually Addr.
[2] Double Bit Hamming Error Individually Addr.
[3] Single Bit Hamming Error Broadcast.
[4] Double Bit Hamming Error Broadcast.
[5] Unknown Message Address Received
[6] Incomplete L1 Message
[7] Incomplete L2a Message
[8] Incomplete RoI Message
[9] TTCrx Address Error (not X”0003”)
[10] Spurious L0
[11] Missing L0
[12] Spurious L1
[13] Boundary L1
[14] Missing L1
[15] L1 message arrives outside legal timeslot

Event_error[11:0] 0x3053 R [16] L1 message missing/timeout
[17] L2 message arrives outside legal timeslot
[18] L2 message missing/timeout
[19] RoI message arrives outside legal timeslot
[20] RoI message missing/timeout
[21] Prepulse error (=0; possible future use)
[22] L1 message content error
[23] L2 message content error
[24] RoI message content error

L1_MessageHeader[11:0] 0x3060 R Debug: Latest received L1 Message

L1_MessageData1[11:0] 0x3062 R Debug: Latest received L1 Message

L1_MessageData2[11:0] 0x3064 R Debug: Latest received L1 Message

L1_MessageData3[11:0] 0x3066 R Debug: Latest received L1 Message

L1_MessageData4[11:0] 0x3068 R Debug: Latest received L1 Message

L2aMessageHeader[11:0] 0x306A R Debug: Latest received L2a Message

L2aMessageData1[11:0] 0x306C R Debug: Latest received L2a Message

L2aMessageData2[11:0] 0x306E R Debug: Latest received L2a Message

L2aMessageData3[11:0] 0x3070 R Debug: Latest received L2a Message

L2aMessageData4[11:0] 0x3072 R Debug: Latest received L2a Message

L2aMessageData5[11:0] 0x3074 R Debug: Latest received L2a Message

L2aMessageData6[11:0] 0x3076 R Debug: Latest received L2a Message

L2aMessageData7[11:0] 0x3078 R Debug: Latest received L2a Message

L2rMessageHeader[11:0] 0x307A R Debug: Latest received L2r Message

RoIMessageHeader[11:0] 0x307C R Debug: Latest received RoI Message

RoIMessageData1[11:0] 0x307E R Debug: Latest received RoI Message

RoIMessageData2[11:0] 0x3080 R Debug: Latest received RoI Message

RoIMessageData3[11:0] 0x3082 R Debug: Latest received RoI Message

FIFO_read_enable 0x3100 T Debug: Triggers a readout pulse to FIFO

FIFO_DAQHeader[15:0] 0x3102 R Debug: Output of FIFO [15:0]

FIFO_DAQHeader[15:0] 0x3103 R Debug: Output of FIFO [31:16]

Table 5-2: List of registers that can be accessed externally. Note that the registers marked debug can be

excluded by setting the generic include_debug_registers to false, but during the development of HW/FW

they come in handy for testing and verification. The module address is not given in this table.

21

5.3 TPC Channel Register Interface
Ch Address TPC Patch Ch Address TPC Patch

0 0X2100 C00 RCU0 108 0x216c A00 RCU0

1 0X2101 C00 RCU1 109 0x216d A00 RCU1

2 0X2102 C00 RCU2 110 0x216e A00 RCU2

3 0X2103 C00 RCU3 111 0x216f A00 RCU3

4 0X2104 C00 RCU4 112 0x2170 A00 RCU4

5 0X2105 C00 RCU5 113 0x2171 A00 RCU5

6 0X2106 C01 RCU0 114 0x2172 A01 RCU0

7 0X2107 C01 RCU1 115 0x2173 A01 RCU1

8 0X2108 C01 RCU2 116 0x2174 A01 RCU2

9 0X2109 C01 RCU3 117 0x2175 A01 RCU3

10 0X210a C01 RCU4 118 0x2176 A01 RCU4

11 0x210b C01 RCU5 119 0x2177 A01 RCU5

12 0x210c C02 RCU0 0 0xC100 A02 RCU0

13 0x210d C02 RCU1 1 0xC101 A02 RCU1

14 0x210e C02 RCU2 2 0xC102 A02 RCU2

15 0x210f C02 RCU3 3 0xC103 A02 RCU3

16 0x2110 C02 RCU4 4 0xC104 A02 RCU4

17 0x2111 C02 RCU5 5 0xC105 A02 RCU5

18 0x2112 C03 RCU0 6 0xC106 A03 RCU0

19 0x2113 C03 RCU1 7 0xC107 A03 RCU1

20 0x2114 C03 RCU2 8 0xC108 A03 RCU2

21 0x2115 C03 RCU3 9 0xC109 A03 RCU3

22 0x2116 C03 RCU4 10 0xC10a A03 RCU4

23 0x2117 C03 RCU5 11 0xC10b A03 RCU5

24 0x2118 C04 RCU0 12 0xC10c A04 RCU0

25 0x2119 C04 RCU1 13 0xC10d A04 RCU1

26 0X211a C04 RCU2 14 0xC10e A04 RCU2

27 0x211b C04 RCU3 15 0xC10f A04 RCU3

28 0x211c C04 RCU4 16 0xC110 A04 RCU4
29 0x211d C04 RCU5 17 0xC111 A04 RCU5

30 0x211e C05 RCU0 18 0xC112 A05 RCU0

31 0x211f C05 RCU1 19 0xC113 A05 RCU1

32 0x2120 C05 RCU2 20 0xC114 A05 RCU2

33 0x2121 C05 RCU3 21 0xC115 A05 RCU3

34 0x2122 C05 RCU4 22 0xC116 A05 RCU4

35 0x2123 C05 RCU5 23 0xC117 A05 RCU5

36 0x2124 C06 RCU0 24 0xC118 A06 RCU0

37 0x2125 C06 RCU1 25 0xC119 A06 RCU1

38 0x2126 C06 RCU2 26 0xC11a A06 RCU2

39 0x2127 C06 RCU3 27 0xC11b A06 RCU3

40 0x2128 C06 RCU4 28 0xC11c A06 RCU4

41 0x2129 C06 RCU5 29 0xC11d A06 RCU5

42 0X212a C07 RCU0 30 0xC11e A07 RCU0

43 0x212b C07 RCU1 31 0xC11f A07 RCU1

44 0x212c C07 RCU2 32 0xC120 A07 RCU2

45 0x212d C07 RCU3 33 0xC121 A07 RCU3

46 0x212e C07 RCU4 34 0xC122 A07 RCU4

47 0x212f C07 RCU5 35 0xC123 A07 RCU5

48 0x2130 C08 RCU0 36 0xC124 A08 RCU0

49 0x2131 C08 RCU1 37 0xC125 A08 RCU1

50 0x2132 C08 RCU2 38 0xC126 A08 RCU2

51 0x2133 C08 RCU3 39 0xC127 A08 RCU3

52 0x2134 C08 RCU4 40 0xC128 A08 RCU4

53 0x2135 C08 RCU5 41 0xC129 A08 RCU5

54 0x2136 C09 RCU0 42 0xC12a A09 RCU0

22

Ch Address TPC Patch Ch Address TPC Patch

55 0x2137 C09 RCU1 43 0xC12b A09 RCU1

56 0x2138 C09 RCU2 44 0xC12c A09 RCU2

57 0x2139 C09 RCU3 45 0xC12d A09 RCU3

58 0X213a C09 RCU4 46 0xC12e A09 RCU4

59 0x213b C09 RCU5 47 0xC12f A09 RCU5

60 0x213c C10 RCU0 48 0xC130 A10 RCU0

61 0x213d C10 RCU1 49 0xC131 A10 RCU1

62 0x213e C10 RCU2 50 0xC132 A10 RCU2

63 0x213f C10 RCU3 51 0xC133 A10 RCU3

64 0x2140 C10 RCU4 52 0xC134 A10 RCU4
65 0x2141 C10 RCU5 53 0xC135 A10 RCU5

66 0x2142 C11 RCU0 54 0xC136 A11 RCU0

67 0x2143 C11 RCU1 55 0xC137 A11 RCU1

68 0x2144 C11 RCU2 56 0xC138 A11 RCU2

69 0x2145 C11 RCU3 57 0xC139 A11 RCU3

70 0x2146 C11 RCU4 58 0xC13a A11 RCU4

71 0x2147 C11 RCU5 59 0xC13b A11 RCU5

72 0x2148 C12 RCU0 60 0xC13c A12 RCU0

73 0x2149 C12 RCU1 61 0xC13d A12 RCU1

74 0X214a C12 RCU2 62 0xC13e A12 RCU2

75 0x214b C12 RCU3 63 0xC13f A12 RCU3

76 0x214c C12 RCU4 64 0xC140 A12 RCU4

77 0x214d C12 RCU5 65 0xC141 A12 RCU5

78 0x214e C13 RCU0 66 0xC142 A13 RCU0

79 0x214f C13 RCU1 67 0xC143 A13 RCU1

80 0x2150 C13 RCU2 68 0xC144 A13 RCU2

81 0x2151 C13 RCU3 69 0xC145 A13 RCU3

82 0x2152 C13 RCU4 70 0xC146 A13 RCU4

83 0x2153 C13 RCU5 71 0xC147 A13 RCU5

84 0x2154 C14 RCU0 72 0xC148 A14 RCU0

85 0x2155 C14 RCU1 73 0xC149 A14 RCU1

86 0x2156 C14 RCU2 74 0xC14a A14 RCU2

87 0x2157 C14 RCU3 75 0xC14b A14 RCU3

88 0x2158 C14 RCU4 76 0xC14c A14 RCU4

89 0x2159 C14 RCU5 77 0xC14d A14 RCU5

90 0X215a C15 RCU0 78 0xC14e A15 RCU0

91 0x215b C15 RCU1 79 0xC14f A15 RCU1

92 0x215c C15 RCU2 80 0xC150 A15 RCU2

93 0x215d C15 RCU3 81 0xC151 A15 RCU3

94 0x215e C15 RCU4 82 0xC152 A15 RCU4

95 0x215f C15 RCU5 83 0xC153 A15 RCU5

96 0x2160 C16 RCU0 84 0xC154 A16 RCU0

97 0x2161 C16 RCU1 85 0xC155 A16 RCU1

98 0x2162 C16 RCU2 86 0xC156 A16 RCU2

99 0x2163 C16 RCU3 87 0xC157 A16 RCU3

100 0x2164 C16 RCU4 88 0xC158 A16 RCU4

101 0x2165 C16 RCU5 89 0xC159 A16 RCU5

102 0x2166 C17 RCU0 90 0xC15a A17 RCU0

103 0x2167 C17 RCU1 91 0xC15b A17 RCU1

104 0x2168 C17 RCU2 92 0xC15c A17 RCU2

105 0x2169 C17 RCU3 93 0xC15d A17 RCU3

106 0X216a C17 RCU4 94 0xC15e A17 RCU4

107 0x216b C17 RCU5 95 0xC15f A17 RCU5

Table 5-3: List registers for all BusyBox channel numbers in decimal, the address to their registers and

which RCU-DRORC pair should be connected to this channel.

23

5.4 BusyBox Channel Layout

Figure 5-1: Layout of 5 U front panel for the BusyBox.

24

25

6 System Overview

The BusyBox is a part of the data acquisition in four of the ALICE sub-detectors, namely:

TPC, PHOS, FMD and EMCal. There are some minor differences between the BusyBoxes for

each sub-detector because of the different numbers of D-RORCs they use.

Table 6-1: Number of D-RORCs per detector.

Detector D-RORCS Panel height

TPC 216 5 units

PHOS 20 1 unit

FMD 24 1 unit

EMCal 3 1 unit

Data acquisition in ALICE is trigger based and is controlled by a Central Trigger Processor

(CTP). The CTP distributes a trigger sequence starting with a L0 trigger when it detects a

collision. Then, depending on the quality of the collision a L1 followed by an L2a or L2r

trigger is issued by the CTP via the LTU.

The TPC Fee starts buffering data upon receiving a L1 trigger and PHOS a L0 trigger. The

Fee on the four sub-detectors can buffer 4 or 8 events depending on number of samples

configured.

So, the BB has two main tasks, keep track of available buffers and maintain a past-future

protection. If the buffers are full or a L1 trigger is issued the BusyBox asserts a busy signal to

the CTP, which will halt further triggers. The busy is then removed if these conditions are no

longer true.

The BusyBox has no direct communication with the Fee and keeps track of available buffers

by communicating with the D-RORCs. The Trigger System sends triggers to the BusyBox

and the Fee. Figure 6-1 below illustrates the BusyBox place in the readout chain.

Figure 6-1: Illustration of the data flow for the BusyBox system. The BusyBox and D-RORCs are placed

in the counting rooms above the experiment hall.

26

27

7 BusyBox Firmware
This chapter discusses the functionality of the firmware and gives a description of each

module with sub-modules. The firmware modules are described with text, pictures, entities

and port details.

7.1 Introduction

Figure 7-1: Main BusyBox firmware modules.

The firmware controls the BusyBox and executes its designed purpose based on inputs from

three sources: TTCrx, BusyBox DCS card and the D-RORCs. The above figure shows the

main firmware modules of the BusyBox and will be discussed in more detail. As mentioned

before the BusyBox has two main functions: assert the busy signal if Fee buffers are full or

when a L0 trigger has been issued by the CTP.

7.1.1 An intuitive explanation of how the BusyBox firmware works

It all starts with a collision of hadrons in the LHC’s ALICE detector. The CTP detects this

collision and notifies the LTU, which sends a L0 trigger to the BusyBox via its optical fibre

network. The L0 trigger is the start of a sequence of triggers which ends with either an L2a,

L2r trigger or a L2 timeout.

The LTU broadcasts the system clock that is directly dependent on the bunchcrossing

frequency in LHC, in addition to L1a and Serial B line, to the BusyBox. This is done through

28

a fibre network and converted by the TTCrx chip on the DCS card to electrical signals. Then

the information is decoded by the Trigger Receiver firmware module in the BusyBox.

Not all of the decoded messages are useful for the BusyBox. Hence, the Trigger Receiver

module only extracts the event ID and triggers from the LTU broadcasts. The triggers are

forwarded to the Busy Controller module, which decides when to assert the busy.

The event ID is used to verify that all D-RORCs have received data from an event and with

only that information in hand; the BusyBox can keep track of the Fee buffers. The BusyBox

sends a message to all D-RORCs requesting them to send back the last event ID they have. If

the event ID received from the D-RORCs is the same event ID as the one the BusyBox

received from LTU, it implies that the event data has been read out from the Fee buffers.

It is the Busy Controller module that keeps track of the Fee buffers. Fee buffers can hold 4 or

8 events and starts buffering data on a L0 trigger (TPC starts on a L1). If there is a L0 trigger

1 buffer is occupied and the buffer is freed if the D-RORC corresponding to that Fee has

replied with the same event ID. This is then checked as OK in a register named EIDOK. The

EIDOK register is AND’ed with the CHEN register (Channel Enable) giving a 1 if all event

ID’s from the D-RORCs are verified.

A control and status register can as the name implies, control and check the status of registers

in the BusyBox. This is done via the DCS board mounted on the BusyBox PCB.

29

7.1.2 VHDL Entity Hierarchy

7.2 BusyBox FPGA Modules

The BusyBox can have one or two FPGAs depending on which detector it is used for. There

are only minor differences in the source code for the three firmware versions (FPGA1,

FPGA2 and FPGA solo). The differences are the number of channels instantiated and extra

logic to coordinate the BUSY signal from the second FPGA to the first when two FPGAs are

used.

7.2.1 Entity BusyBox FPGA Modules

This module acts as a wrapper for each version of the three firmware versions:

busybox_fpga1.vhd, busybox_fpga2.vhd and busybox_fpga1_solo.vhd. These wrappers

instantiates the BusyBox Top module with the required generic parameters and extra logic.

The wrapper also adds and configures the Virtex-4 IO buffers and Digital Clock Manager

(DCM) around the BusyBox Top module. Since the wizard that generates the wrapper does

not support enabling of the DIFF_TERM attribute of the differential input buffer, it is not

included. Instead the input buffer (IBUFGDS) is instantiated in the BusyBox wrapper files

where the DIFF_TERM attribute is enabled. This is essential for the design to operate

• busybox_fpga1_solo || busybox_fpga1 || busybox_fpga2

o busylogic_top

� ctrl_reg

� dcs_arbit_addr_dec

� transmitter_module

• serial_encoder

o PISO

� multi_channel_receiver

• signle_channel_receiver

o serial_rx

• branch_controller

• backbone_controller

� rx_mem_filter

� receiver_memory_module

� rx_bram

� event_validator_top

• drorc_inbox_buffer

• trigger_eventid_queue

o eventide_fifo

o eventide_extractor

• eventide_control

• eventide_processor

� trigger_receiver_busy_logic

� busy_controller

30

reliable, otherwise the DCM may not lock on the incoming reference clock and the internal

clock signals will be full of glitches and spurious behaviour.

Figure 7-2: Entity for BusyBox FPGA modules.

Table 7-1: I/O details for BusyBox FPGA Modules.

Port Name Direction # Bit Description

clock_lvds_P Input 1 std_logic;

clock_lvds_N Input 1 std_logic;

areset_n Input 1 std_logic;

serialB_in Input 1 std_logic;

L1Trig_P Input 1 std_logic;

L1Trig_N Input 1 std_logic;

serial_rx_p Input 120 std_logic_vector(0 to num_of_channels);

serial_rx_n Input 120 std_logic_vector(0 to num_of_channels);

dcs_adr Input 16 std_logic_vector(15 downto 0);

dcs_strobe_n Input 16 std_logic_vector(15 downto 0);

dcs_RnW Input 1 std_logic;

intercom_busy Input 1 std_logic;

serial_tx_p Output 1 std_logic_vector(0 to num_of_channels)

serial_tx_n Output 1 std_logic_vector(0 to num_of_channels)

dcs_data In/Out 1 std_logic;

dcs_ack_n Output 1 std_logic;

BUSY_1 Output 1 std_logic;

BUSY_2 Output 1 std_logic;

leds Output 13 std_logic_vector(1 to 13);

7.3 BusyBox Top module

7.3.1 Entity BusyBox Top module

This is the top level structural module of the BusyBox design. All eight main modules are

instantiated and connected in this module.

31

Figure 7-3: Entity for BusyBox top module.

Table 7-2:I/O details for BusyBox Top Module.

Port Name Direction # Bit Description

clock_a Input 1 std_logic; the clock_a frequency is 200 MHz.

clock_b Input 1 std_logic; the clock_b frequency is 40 MH;

areset Input 1 std_logic;

serialB_in Input 1 std_logic;

L1Trig_in Input 1 std_logic;

channels_in Input 120 std_logic_vector(0 to num_of_channels);

dcs_addr Input 16 std_logic_vector(15 downto 0);

dcs_strobe_n Input 1 std_logic;

dcs_RnW Input 1 std_logic;

ttcrx_rdy Input 1 std_logic;

buffers_used Output 4 std_logic_vector(3 downto 0);

channels_out Output 120 std_logic_vector(0 to num_of._channels);
busy_out Output 1 std_logic;

dcs_ack_n Output 1 std_logic;

dcs_data In/Out 16 std_logic_vector(15 downto 0);

7.4 DCS Bus Arbiter and Address Decoder

The DCS Bus Arbiter and Address Decoder module is an asynchronous 16 bit data/address

handshake protocol for communication between the FPGA and DCS board. This protocol is

used to read and write registers in the BusyBox firmware. The MSB of the 16 bits DCS bus

address selects which FPGA to communicate with. Then each module can be accessed with

the next three bits and the remaining bits are used to target specific sub-module registers.

Table 7-3: Bit-mapping of DCS bus address.

FPGA address Module address Sub module address

15 14 – 12 11 – 0

32

7.4.1 Entity DCS bus arbiter and address decoder

Figure 7-4: Entity for DCS Bus Arbiter and Address Decoder.

Table 7-4: IO details for DCS Bus Arbiter and Address Decoder.

Port Name Direction # Bit Description

c_fpga_id Input 1 std_logic; ‘0’ fpga1 or ‘1’ fpga2.

clock_b Input 1 std_logic; the clock_b frequency is 40 MHz

dcs_strobe_n Input 1 std_logic; the asynchronous handshake is done with
STROBE_N from the DCS board.

dcs_RnW Input 1 std_logic; ‘1’ read and ‘0’ write.
dcs_addr Input 16 std_logic_vector(15 downto 0); address module and

submodule register.

dcs_data Inout 16 std_logic_vector(15 downto 0); bi-directional data line.

dcs_ack_n Output 1 std_logic; the asynchronous handshake is done with
ACK_N from the busy board.

module_data_array Output 7 std_logic_vector(0 to num_of_modules-1); communication
with modules.

module_en_array Output 7 std_logic_vector(0 to num_of_modules-1); communication
with modules.

module_address Output 12 std_logic_vector(11 downto 0); communication with
modules.

module_RnW Output 1 std_logic; communication with modules.

7.5 Receiver Module

Serial data from the D-RORCs are handled by the Receiver module and up to 120 single

communication channels can be implemented in one FPGA.

Table 7-5: Numbers of channels per detector pr FPGA.

Detector # Channels on FPGA 1 # Channels on FPGA 2

TPC 120 96

PHOS 20 N/A

FMD 24 N/A

EMCal 3 N/A

Incoming serial data is sampled at 200 MHz by Serial Decoder modules and shifted through a

100 bit shift register (98 bit in firmware due to capture conditions) as shown in Figure 7-5.

Each bit is sampled five times and then the middle three bits are run through a MAJ

(Majority) gate where the majority bit is selected to be the data bit which is captured as part of

the final 16 bit data.

33

Figure 7-5: Internal architecture of the implementation of a serial decoder.

In order to implement error tolerance, the 48 bit word from the D-RORC is sampled in a 16

bit data frame. A state machine in the Single Channel Receiver module reads out the 16 bit

data words, one word after another. Whenever the serial decoder flags that a data word is

received it is sent to the Branch Controller. A countdown timer in the state machine discards

the data if the strict timing between data readout is compromised. In that case the next word is

then considered the first in the readout sequence of three words.

If all three words have been read out successfully to the Brach Controller, and no parity errors

and timeouts were found, the state machine will concatenate the three words to a 48 bit

message and send it to the Backbone Controller.

Up to sixteen Single Channel Receivers can be connected to a Branch Controller module. The

Branch Controller buffers data from the Single Channel Receivers and stops further buffering

until data have been read out by the Backbone Controller. The Backbone Controller may have

up to eight Branch Controllers and the concept is illustrated in Figure 7-6.

Figure 7-6: Concept of data collector architecture.

7.5.1 Receiver Module VHDL Entity Hierarchy

• Multi Channel Receiver

o Single Channel Receiver

� Serial Decoder

o Branch Controller

o Backbone Controller

34

7.5.2 Entity Multi Channel Receiver module

The CHEN (Channel Enable) register tells this module how many serial receivers to enable.

Three generics can be set before synthesizing the firmware:

• Numbers of channels (120 max)

• Numbers of branches (8 max)

• Cycles per bit (5 by default)

Based on the CHEN register the Multi Channel Receiver then enables/disables the correct

numbers of sub modules to be instantiated. Channels that are not in use will be grounded to

avoid electromagnetic noise. This noise would have produced a lot of garbage data if left

floating.

Figure 7-7: Entity for Channel Receiver Module.

Table 7-6: I/O details for Channel receiver Module.

Port Name Direction # Bit Description

clock_a Input 1 std_logic; the clock_a frequency is 200 MHz.

areset Input 1 std_logic; asynchronous reset

serial_channel_in Input 120 std_logic_vector(0 to num_of_channels); LVDS serial
channels from D-RORCs

CHEN_vector Input 120 std_logic_vector(0 to num_of_channels); CHEN vector is
a register in the Control and Status Register module , one
bit set or disable channels.

data_out Output 48 std_logic_vector(47 downto 0); 48 bit data from D-RORCs

channel_out Output 8 std_logic_vector(7 downto 0); toggles the data from the
different channels to be outputted

write_req Output 1 std_logic; ‘1’ D-RORC data ready to send

7.5.3 Entity Single Channel Receiver

A state machine checks for parity errors and make sure that the 16 bit words from the serial

decoder is within the allowed time limit. The three 16 bit words are concatenated to a 48 bit

message and stored temporary in a registers. If the register is not read out fast enough it will

be overwritten.

Figure 7-8: Entity for Single Channel Receiver.

35

Table 7-7: I/O details for Single Channel Receiver.

Port Name Direction # Bit Description

clock_a Input 1 std_logic; the clock_a frequency is 200 MHz.

Areset Input 1 std_logic; asynchronous rest.

Enable Input 1 std_logic;

serial_in Input 1 std_logic; data bit from serial decoder.

data_out Output 48 std_logic_vector(47 downto 0); 48 bit data from D-RORC

read_ack Input 1 std_logic;

data_av Output 1 std_logic;

7.5.4 Entity Serial Decoder

If the Serial Decoder is enabled by the CHEN register it will wait for the start transition from

four 1’s to four 0’s and the stop condition of three 0’s before the data is captured.

Two functions in the busylogic_pkg package, the majority and parity, will take the three

middle samples of each bit period
5
 and determine the logic value, see Figure 7-5. The parity is

then calculated from the extracted 16 bit word and compared with the received parity word.

Parity error flag is raised if any parity errors and data available flag is raised when data is

available.

Figure 7-9: Capture conditions for a data frame.

Figure 7-10: Entity for Serial Decoder.

Table 7-8: I/O details for Serial Decoder.

Port Name Direction # Bit Description

clock_a Input 1 std_logic; the clock_a frequency is 200 MHz.

areset Input 1 std_logic; asynchronous reset

enable Input 1 std_logic;

serial_in Input 1 std_logic; LVDS serial signal from D-RORC

parity_error Output 1 std_logic;

data_av Output 1 std_logic;

data_out Output 16 std_logic_vector(15 downto 0); data from D-RORC

5
 Each bit period is sampled 5 times.

36

7.5.5 Entity Branch Controller

The Branch Controller reads data from up to 16 Single Channels Receiver’s and feed the data

to the backbone controller. It scans the receivers for data available flag and copies the data to

a buffer when the flag is raised. The branch controller will hold the flag until the Backbone

Controller has verified that it has read the message.

Figure 7-11: Entity for Branch Controller.

Table 7-9: I/O details for Branch Controller.

Port Name Direction # Bit Description

clock_a Input 1 std_logic; the clock_a frequency is 200 MHz.

areset Input 1 std_logic; asynchronous reset

data_in_array Input 16 receiver_busy_array(0 to 15);

data_av_vector Input 16 std_logic_vector(0 to 15); ‘1’ when data is available

read_ack Input 1 std_logic; from backbone controller

read_ack_vector Output 16 std_logic_vector(0 to 15);

data_out Output 48 std_logic_vector(47 downto 0); 48 bit data

count_out Output 4 std_logic_vector(3 downto 0); counter to keep track of
serial channel being scanned

data_av Output 1 std_logic; ‘1’ when data from serial receiver is ready to be
sent

7.5.6 Entity Backbone Controller

The Backbone Controller reads data from up to 8 Branch Controller’s and writes the data to

the RX Memory module and the D-RORC inbox buffer in the Event Validator Top module.

Figure 7-12: Entity for Backbone Controller.

Table 7-10: I/O details for Backbone Controller.

Port Name Direction # Bit Description

clock_a Input 1 std_logic; the clock_a frequency is 200 MHz.

areset Input 1 std_logic; asynchronous reset

data_in_array Input 8 receiver_bus_array(0 to 7); work.busylogic_pkg

count_in_array Input 8 count_array(0 to 7); work.busylogic_pkg

read_ack_vector Output 8 std_logic_vector(0 to 7);

data_out Output 48 std_logic_vector(47 downto 0); 48 bit data

37

Port Name Direction # Bit Description

count_out Output 8 std_logic_vector(7 downto 0);

data_av_vector Output 8 std_logic_vector(0 to 7);

write_req Output 1 std_logic;

7.6 Transmitter Module

The transmitter module requests the event ID from the D-RORCs and consists of a controller,

a serial encoder and a masking vector. A message register and a channel register are available

for the DCS Bus Arbiter and Address Decoder module and the Event ID Verification module.

Data from the message register will be loaded into the serial encoder and the masking vector

will be created based on the channels enabled in the Channel register. The masking vector lets

the Event ID Verification module or the DCS bus module select which channels to enable or

disable. The controller handles requests from the Event ID Verification module and the DCS

bus module to prevent communication conflicts, but the DCS bus module is just used for

debugging purposes.

A state machine in the serial encoder module sends a 16 bit word to the PISO (Parallell In –

Serial Out) module by request from the controller.

Figure 7-13: Transmitter system.

The Transmitter module will request event IDs from the D-RORCs. The request is a 16 bit

word and is sent to all D-RORCs, see Table 7-11 and Table 7-12.

Table 7-11: Bit map for Trigger module request.

15 – 12 11 – 8 7 - 0

Command type Request ID Unused

Table 7-12: Request commands.

Command type Bit Code Description

Request Event ID 0100 Request an Event ID from the D-RORC.

Resend last message 0101 Command the D-RORC to re-transmit the last message sent.

Force pop Event ID 0110 Command the D-RORC to pop one Event ID from its local
queue.

Force Request ID 0111 Command the D-RORC to store the attached Request ID.

38

7.6.1 Transmitter module VHDL Entity Hierarchy

7.6.2 Entity Transmitter module

The Transmitter module is initiating the serial encoder and setting the masking vector. A 16

bit register can be accessed from the DCS bus as shown in Figure 7-13. The register contains

a message register and a channel register.

temp_dcs_data

dcs_tx_channel dcs_tx_data

15 – 8 7 - 0

Table 7-13: Bit map for DCS data.

The channel register selects which channel to be masked, based on the CHEN register in the

Status and Control module, and unmasked the other channels. If the value in the channels

register does not specify a specific channel, all channels are unmasked and the message is

broadcasted to all channels.

The Event ID module sends a request to the Transmitter module and the request is granted if

there is no pending flag from the DCS bus. The controller loads data and the masking vector

from the Event ID Verification module.

A flag is raised to indicate if data are available to be written from the DCS board to the

message register. A state machine, see Figure 7-14, in the controller sees the flag and starts

loading data into the serial encoder and sets the masking vector. The flag is removed and the

procedure is executed.

Messages are Hamming coded in the Transmitter module in an 8:4 code applied to the 4 bit

command word and request ID. The receiver (D-RORC) will discard data if it finds any

errors. The Hamming function is in the busylogic_pkg.

Table 7-14: Hamming code table

Bit
position

8
P4

7
D4

6
D3

5
D2

4
P3

3
D1

2
P2

1
P1

P1 X X X P1

P2 X X X P2

P3 X X X P3

P4 P4 X X X X X X X

• Transmitter module

o Serial encoder

� PISO

39

Figure 7-14: State diagram for TX controller

Figure 7-15: Entity for Transmitter Module.

Table 7-15: I/O details for Transmitter Module.

Port Name Direction # Bit Description

areset Input 1 std_logic; asynchronous reset

clock_a Input 1 std_logic; the clock_a frequency is 200 MHz

clock_b Input 1 std_logic; the clock_b frequency is 40 MHz

fw_req Input 1 std_logic;

fw_data Input 8 std_logic_vector(7 downto 0);

fw_mask Input 120 std_logic_vector(0 to num_of_channels);

module_en Input 1 std_logic;

module_rnw Input 1 std_logic;

module_data_in Input 16 std_logic_vector(15 downto 0);

module_address Input 12 std_logic_vector(11 downto 0);

40

Port Name Direction # Bit Description

serial_channels_out Output 120 std_logic_vector(0 to num_of_channels);

fw_ack Output 1 std_logic;

module_data_out Output 16 std_logic_vector(15 downto 0); 16 bit request data to
D-RORCs

7.6.3 Entity Serial Encoder

Encodes the command type word which is sent to the D-RORCs

Figure 7-16: Entity for Serial Encoder.

Table 7-16: I/O details for Serial Encoder.

Port Name Direction # Bit Description

areset Input 1 std_logic; asynchronous reset

clock_in Input 1 std_logic; ; the clock_in frequency is 200 MHz

data_in Input 1 std_logi_vectorc;

data_enable_in Input 1 std_logic;

busy_out Output 1 std_logic;

serial_out Output 1 std_logic;

7.6.4 Entity PISO (Parallel In – Serial Out)

Serialize the command type message which is sent to the D-RORCs.

Figure 7-17: Entity for PISO.

Table 7-17: I/O details for PISO.

Port Name Direction # Bit Description

areset Input 1 std_logic; asynchronous reset

clock Input 1 std_logic; ; the clock frequency is 200 MHz

data_load Input 1 std_logic;

data_shift Input 1 std_logic;

data_in Input 1 std_logic_vector;

serial_out Output 1 std_logic;

piso_emty Output 1 std_logic;

41

7.7 RX Memory Module

The BusyBox can store up to 1024 D-RORC messages from the Receiver module in the RX

Memory module. Four BRAM modules are instantiated in the FPGA and can be accessed

from both clock domains
6
. Data from the Receiver module is 56 bit and is written into

memory at the address given by a 10 bit counter. The DCS bus is limited to read 16 bit at a

time, and needs four read operations to get the whole word from memory. The RX Memory

module can be written to by the DCS bus for testing and verification purposes.

Figure 7-18: Illustration of the RX Memory module.

7.7.1 Entity RX Memory Module

Figure 7-19: Entity for RX Memory Module.

Table 7-18: I/O details for RX Memory Module.

Port Name Direction # Bit Description

clock_a Input 1 std_logic; the clock_a frequency is 200 MHz

clock_b Input 1 std_logic; the clock_b frequency is 40 MHz

areset Input 1 std_logic; asynchronous reset

data_in Input 64 std_logic_vector(63 downto 0);

data_in_en Input 1 std_logic;

mem_pointer Output 10 std_logic_vector(9 downto 0);

module_data_in Output 16 std_logic_vector(15 downto 0);

6
 The Receiver module operates in the 200 MHz domain while the internal logic of the BusyBox runs in the 40

MHz domain.

42

Port Name Direction # Bit Description

module_data_out Output 16 std_logic_vector(15 downto 0);

module_address Output 12 std_logic_vector(11 downto 0);

module_rnw Output 1 std_logic;

module_en Output 1 std_logic;

7.8 RX Memory Filter Module

The RX Memory filter can be used to filter which messages from specific channels will

trigger the write enable signal form the RX Memory Module. Each message from the

Receiver Module will have an 8 bit channel number appended to it. Each individual bit of this

8 bit word can be compared with bits in a register in the RX Memory Filter that is accessible

from the DCS bus interface. The RX Memory Filter has registers with 16 bits. The first 8 bits

are used to toggle matching individual bits. The last 8 bits are the bits that will be compared

with the channel number bits of the message. This feature makes it easier to see the response

of only a subset of channels in the RX Memory without disabling the other channels in the

CHEN registers.

7.8.1 Entity RX Memory Filter Module

Figure 7-20: Entity for RX Memory Filter.

Table 7-19: I/O details for RX Memory Filter.

Port Name Direction # Bit Description

pattern Input 8 std_logic_vector(7 downto 0);

match_mask Input 8 std_logic_vector(7 downto 0);

drorc_address Input 8 std_logic_vector(7 downto 0);

write_en Input 1 std_logic;

filtered_we Output 1 std_logic;

7.9 Trigger Receiver Module

The Trigger Receiver module is responsible for decoding all the information sent from the

Central Trigger Processor (CTP). The information is sent on two communication lines, L1

accept line and Serial B line, from the TTCrx chip which converted the optical information

from CTP (distributed by LTU). The L0 and L1a triggers are transmitted on the L1 accept line

while the trigger messages, L1 accept message, L2 accept message and L2 reject message are

sent on the Serial B line. All information sent is synchronous with the LHC clock.

L1 accept line is decoded by the Channel A decoder and the L0 and L1 triggers are sent to the

Busy Controller. Serial B line is decoded by the Channel B decoder, checked for hamming

errors, address messages are then decoded and validated before a CDH header is generated

and stored in a CDH FIFO.

43

The CDH header holds the event ID used by the Event ID Verification module to verify an

event readout from the Fee. A buffered events counter is outputted from the CDH FIFO to

notify the Event ID Verification module that an event ID is ready to be read out once the

buffered events counter is incremented. See Figure 7-22 and the TTC receiver requirement

specification document for more information [2].

Figure 7-21: Block diagram of the Trigger Receiver module. From [2].

FIFO_wrapper

 Channel B

deserializer

Channel B

Channel A

data

L1a trigger

L0 trigger

FIFO

(depth 128

width 33)

Header_#

RCU-bus

Interface

L2a / L2r trigger

Start of run / End of run

Counters

clk

Channel A

decoder

Errors

L2 timeout

Cal. pre-pulse
Broadcast

Message

Decoder
Bunchcnt reset

Eventcnt reset

data

Hamming

Decoder

Sequence

Validator
Msg#

Test

Pattern

Generator

Buffered events

CDH

Read enable

Error/info

Busy

L1r trigger

Addressed

Message

Decoder

Triggers

Phase detector

Fee reset

sclk

phase

detector

meb_full

ddl_rdy_rx

44

7.9.1 Entity Trigger Receiver Module

Figure 7-22: Entity for Trigger Receiver Module.

Table 7-20: I/O details for Trigger Receiver Module.

Port Name Direction # Bit Description

clk Input 1 std_logic; the clk frequency is 40.08 MHz

reset_n Input 1 std_logic;

L1Accept Input 1 std_logic;
serialBchannel Input 1 std_logic;

read_enable Input 1 std_logic;

data_in Input 16 std_logic_vector(15 downto 0);

addr Input 12 std_logic_vector(11 downto 0);

rnw Input 1 std_logic;

module_enable Input 1 std_logic;

FEE_reset Output 1 std_logic; N/A

busy Output 1 std_logic;

cal_pre_pulse Output 1 std_logic; N/A

start_of_run Output 1 std_logic; N/A

end_of_run Output 1 std_logic; N/A

event_reset Output 1 std_logic; N/A

bunch_reset Output 1 std_logic; N/A

bunchcnt_overflow Output 1 std_logic; N/A

L0_trigger Output 1 std_logic;

L1a_trigger Output 1 std_logic;

L2a_trigger Output 1 std_logic;

L2r_trigger Output 1 std_logic;

L2_timeout Output 1 std_logic;

DAQ_header_out Output 33 std_logic_vector(32 downto 0);

read_counter_out Output 4 std_logic_vector(3 downto 0);

buffered_events Output 4 std_logic_vector(3 downto 0);

data_out Output 16 std_logic_vector(15 downto 0);

45

7.10 Event ID Verification Module

The Trigger Receiver module’s CDH FIFO is constantly monitored by the Event ID

Verification module. Data from an L2a/L2r or L2 timeout trigger is stored in the CDH format

in the FIFO and will be read out by the Event ID Queue module.

The event controller requests the Transmitter module to read out the data and send it to the D-

RORCs. The Receiver module forwards the received D-RORC data to the D-RORC Inbox

Buffer. The Inbox operates in both frequency domains
7
 and makes the data available for the

Event processor, which compares the event ID.

The Event Processor has a register called EIDOK (Event ID OK), and together with the

CHEN vector it compares the two event IDs from the Event ID Queue module and the D-

RORC Inbox buffer. If the ID matches, the verification gate will assert an event verified

signal. An overview of the ID verification model is shown in Figure 7-25.

Figure 7-23: Overview of the Event ID Verification module.

7
 The Receiver module operates in the 200 MHz domain while the internal logic of the verification module runs

in the 40 MHz domain.

46

7.10.1 Event Id Verification VHDL Entity Hierarchy

7.10.2 Entity Event Validator

This is the top module that concatenates all the sub modules and also instantiates the D-

RORC Inbox Buffer.

Figure 7-24: Entity for Event Validator.

Table 7-21: I/O details for Event Validator.

Port Name Direction # Bit Description

areset Input 1 std_logic; asynchronous reset

clock_a Input 1 std_logic; the clock_a frequency is 200 MHz

clock_b Input 1 std_logic; the clock_b frequency is 40 MHz

DRORC_data_in Input 48 std_logic_vector(47 downto 0);

DRORC_channel Input 8 std_logic_vector(7 downto 0);

DRORC_data_en Input 1 std_logic;

CHEN_vector Input 120 std_logic_vector(0 to num_of_channels);

DAQ_header_data Input 33 std_logic_vector(32 downto 0);

buffered_events Input 4 std_logic_vector(3 downto 0);

DAQ_read_counter Input 4 std_logic_vector(3 downto 0);

force_validate Input 1 std_logic;

halt_validator Input 1 std_logic;

• Event Validator

o Trigger EventID Queue

� EventID FIFO

� EventID Extractor

o EventID Control

o Event Processor

o D-RORC Inbox Buffer

47

Port Name Direction # Bit Description

req_timeout Input 16 std_logic_vector(15 downto 0);

fw_tx_ack Input 1 std_logic;

EIDOK_vector Output 120 std_logic_vector(0 to num_of_channels);

read_enable Output 1 std_logic;

event_valid_out Output 1 std_logic;

current_event_id Output 36 std_logic_vector(35 downto 0);

most_recent_event_id Output 36 std_logic_vector(35 downto 0);

requestID Output 4 std_logic_vector(3 downto 0);

retry_count Output 16 std_logic_vector(15 downto 0);

num_of_eventids Output 4 std_logic_vector(3 downto);
fw_tx_request Output 1 std_logic;

fw_tx_data Output 8 std_logic_vector(7 downto 0);

fw_tx_mask Output 120 std_logic_vector(0 to num_of_channels);

7.10.3 Entity Trigger EventID Queue

This module is a structural architecture to concatenate the EventID FIFO and the EventID

Extractor. The Trigger EventID Queue extracts the bunchcount and orbit ID from the CDH

message stored in the Trigger Receiver CDH FIFO. It then forwards the two messages to the

Event Processor for comparison with the bunchcount and orbit ID from the all the D-RORCs.

Figure 7-25: Entity for Trigger EventID Queue.

Table 7-22: I/O details for Trigger EventID Queue.

Port Name Direction # Bit Description

clock_b Input 1 std_logic; the clock_b frequency is 40 MHz

areset Input 1 std_logic; asynchronous reset

DAQ_header_data Input 33 std_logic_vector(32 downto 0);

buffered_events Input 4 std_logic_vector(3 downto 0);

DAQ_read_counter Input 4 std_logic_vector(3 downto 0);

new_eventid_en Input 1 std_logic;

read_enableventid_out Output 1 std_logic;

eventide_out Output 1 std_logic;

new_eventid_av Output 1 std_logic;

num_of_eventids Output 4 std_logic_vector(3 downto 0);

most_recent_eventid Output 36 std_logic_vector(35 downto 0);

7.10.4 Entity EventID Extractor

An L2a trigger generates a CDH message in the Trigger Receiver module with the

bunchcount and orbit ID of the event. The CDH message holds more information than just

these two messages. Thus, the EventID Extractor needs to sort through the CDH message to

get the information needed. When the messages are read out they are sent for verification in

48

the Event Processor module. The messages are also forwarded to the Control and Status

Register module.

Figure 7-26: Structure of the CDH FIFO. From [2]

 The figure above shows the structure of the CDH FIFO and the Event message. Header_1 (12

bit) contains the bunchcross ID and Header_2 (24 bit) the orbit ID. The two words are then

concatenated to a 36 bit word named event ID.

areset read_enable

clock_in write_enable

DAQ_header_data extracted_eventid

DAQ_read_counter

buffered_events

Figure 7-27: Entity for EventID Extractor.

Table 7-23: I/O details for EventID Extractor.

Port Name Direction # Bit Description

areset Input 1 std_logic; asynchronous reset

clock_in Input 1 std_logic; the clock_in frequency is 40.08 MHz

DAQ_header_data Input 33 std_logic_vector(32 downto 0); 33 bit word

DAQ_read_counter Input 4 std_logic_vector(3 downto 0); counts through the 9
words in the CDH message

buffered_events Input 4 std_logic_vector(3 downto 0); counts numbers of
buffered evnts in the FIFO

read_enable Output 1 std_logic;

write_enable Output 1 std_logic;

extracted_eventid Output 36 std_logic_vector(35 downto 0); the extracted orbit end
bunch cross IDs

7.10.5 Entity Event ID Control

The Event ID Control module is a state machine that monitors and controls the event

verification process. Under is a state diagram of the controller.

49

Figure 7-28: State diagram for EventID Controller.

Figure 7-29: Entity for EventID Control.

50

Table 7-24: I/O details for EventID Control.

Port Name Direction # Bit Description

clock_b Input 1 std_logic; the clock_b frequency is 40 MHz

areset Input 1 std_logic; asynchronous reset

force_validate Input 1 std_logic;

halt_validator Input 1 std_logic;

new_eventid_av Input 1 std_logic;

inbox_emty Input 1 std_logic;

event_valid_int Input 1 std_logic;

req_timeout Input 16 std_logic_vector(15 downto 0);

tx_ack Input 1 std_logic;

new_evetid_en Output 1 std_logic;

inbox_read_req Output 1 std_logic;

event_valid_out Output 1 std_logic;

event_reset Output 1 std_logic;

tx_req Output 1 std_logic;

tx_data Output 8 std_logic_vector(7 downto 0);

requestID Output 4 std_logic_vector(3 downto 0);

retry_count Output 16 std_logic_vector(15 downto 0);

7.10.6 Entity Event ID Processor

In this module all the verification occurs and based on the CEHN register it will continuously

compare the event IDs and set each individual channel with ‘1’ if match or ‘0’ if mismatch in

a register called EIDOK. A verification gate will flag an event verified signal if either the

CHEN register is disabled or all channels where checked in the EIDOK register.

Figure 7-30: Entity for EventID Processor.

Table 7-25: I/O details for EventID Processor.

Port Name Direction # Bit Description

clock_b Input 1 std_logic; the clock_b frequency is 40 MHz

areset Input 1 std_logic; asynchronous reset

trigger_eventid Input 36 std_logic_vector(35 downto 0);

DRORC-message Input 56 std_logic_vector(55 downto 0);

CHEN_vector Input 120 std_logic_vector(0 to num_of_channels);

local_requestID Input 4 std_logic_vector(3 downto 0);

event_reset Input 1 std_logic;

EIDOK_vector Output 120 std_logic_vector(0 to num_of_channels);

tx_mask Output 120 std_logic_vector(0 to num_of_channels);

event_valid Output 1 std_logic;

51

7.11 Busy Controller Module

There are four conditions that sets the busy signal high and only one have to be true to set the

busy. The TTCrx ready (ttcrx_rdy) is added to the BusyBox since each sub-detector should

report busy if this is not asserted. If there is a physical problem with the connection to the

LTU or the CTP is issuing a global reset, the busy is set [JohanA]. Every time a L0 trigger is

detected a countdown timer (timeout_active) starts and the busy is set for a pre set time

period. The busy time can be set manually with a register in the Control and Status Register

module.

The TPCs Fee starts buffering data when a L1 trigger is issued and the other detectors starts

buffering upon a L0 trigger. The FEE can buffer 4 or 8 events depending on how many

samples are configured in the ALTRO chip and the busy is set when the buffers are full.

The Busy Controller module increment a register (buffer_count) when a L0 is detected (L1

for TPC), decrements the register when a L2 Reject trigger is asserted and when the Event ID

Verification module asserts the event valid signal.

7.11.1 Entity Busy Controller Module

Figure 7-31: Entity for Busy Controller Module.

Table 7-26: I/O details for Busy Controller Module.

Port Name Direction # Bit Description

areset Input 1 std_logic; asynchronous resets

clock_b Input 1 std_logic; the clock_b frequency is 40 MHz.

ttcrx_rdy Input 1 std_logic; ttcrx_rdy out from dcs_ctrl7 (physical line on
the DCS-RCU connector). If not asserted it implies a
physical problem with connection to the LTU, or that
the CTP is issuing a global reset via the TTCrx.

L0_trigger Input 1 std_logic; N/A

L1a_trigger Input 1 std_logic; L1a_trigger output from
trigger_receiver_busy_model. Starts buffering data in
Fee if L1a_trigger signal is asserted.

L2a_trigger Input 1 std_logic; N/A

L2r_trigger Input 1 std_logic; L1r_trigger output from
trigger_receiver_busy_model. Overwrites buffers in
Fee if L2r_trigger signal is asserted.

52

Port Name Direction # Bit Description

L2_timeout Input 1 std_logic; L2_timeout output from
trigger_receiver_busy_model. Overwrites buffers in
Fee if L2_timeout signal is asserted.

busy_triggermodule Input 1 std_logic; busy_triggermodule output from
trigger_receiver_module. Asserted when Fee buffers
are full (4-8 depending on the number of samples
configured in the ALTRO).

event_valid Input 1 std_logic;

trig_timeout Input 16 std_logic_vector(15 downto 0); programmable timeout
following the start of a trigger sequence. 10 us
resolution. Register 0x2008 in Control and Status
Register. Set Register to A (10 decimal) to get 100 us
timeout.

fee_buffers_available Input 4 std_logic_vector(3 downto 0); Holds the numbers of
buffers assumed on the FEE. Register 0x2009. Default
is 4.

busy_out Output 1 std_logic; busy_out is asserted when busy conditions
are met.

fee_buffers_used Output 4 std_logic_vector(3 downto 0);

busy_time Output 32 std_logic_vector(31 downto 0); busy_time count
numbers of clock cycles busy signal is asserted.

7.12 Control and Status Registers

This module has information about register and control signals available for the BusyBox. See

chapter 3 for more information.

7.12.1 Entity Control and Status Register

Figure 7-32: Entity for Control and Status Registers.

Table 7-27: I/O details for Control and Status Registers.

Port Name Direction # Bit Description

clock_b Input 1 std_logic; the clock_b frequency is 40 MHz

areset Input 1 std_logic; asynchronous resets

53

Port Name Direction # Bit Description

module_en Input 1 std_logic;

module_rnw Input 1 std_logic;

module_address Input 12 std_logic_vector(11 downto 0);

module_data_in Input 16 std_logic_vector(15 downto 0);

mem_pointer Input 10 std_logic_vector(9 downto 0);

event_count Input 4 std_logic_vector(3 downto 0);

current_eventid Input 36 std_logic_vector(35 downto 0);

most_recent_eventid Input 36 std_logic_vector(35 downto 0);

requestID Input 4 std_logic_vector(3 downto 0);

retry_count Input 16 std_logic_vector(15 downto 0);
EIDOK_vector Input 120 std_logic_vector(0 to num_of_channels);

busy_time Input 32 std_logic_vector(31 downto 0);

module_data_out Output 16 std_logic_vector(15 downto 0);

rx_mem_matching_mask Output 8 std_logic_vector(7 downto 0);

rx_mem_pattern Output 8 std_logic_vector(7 downto 0);

fee_buffers_available Output 4 std_logic_vector(3 downto 0);

trig_timeout Output 16 std_logic_vector(15 downto 0);

req_timout Output 16 std_logic_vector(15 downto 0);

halt_validator Output 1 std_logic;

force_validate Output 1 std_logic;

CHEN_vector_out Output 120 std_logic_vector(0 to num_of_channels);

54

55

8 BusyBox Hardware
This chapter discusses the hardware on the BusyBox PCB.

8.1 PCB

Figure: 8-1: PCB layout of BusyBox.

56

Table 8-1: List of components on the PCB.

Type Description

1 LED indicators -

2a LEMO contact Lemo EPG.0b.302.HLN

2b LEME contact Lemo EPG.0b.302.HLN

2c LVDS driver TI SN65LVDM31

3 LED indicators -

4 RJ-45 contact RJ-45 contacts for D-RORCs

5 Mezzaine connectors Mezzaine card holders to additional RJ-45 connectors

6 FPGA 1/solo config -

7 Select MAP -

8a FPGA 1 Xilinx Virtex IV

8b FPGA 2 Xilinx Virtex IV (TPC only)

9 38-Pin Low-Voltage
Probe

Agilent Technologies E5339A

10 DCS board Connectors for DCS board

11 Power supply
connector

Connector for external power supply. Power supply: 5V, 12 A. XP
POWER Model: ECM60US05

12a LVDS driver -

12b RJ-45 connector Block with two RJ-45 connectors

13 Power interface GND, 1.2V, 2.5V and 3.3V output

14 FPGA 2 config

15abc Voltage regulator PTH05000W voltage regulators from Texas Instruments

16 JTAG interface -

17 SelectMap interface -

8.2 Description Details

7.2.1 Led Indicators

The BusyBox board has four LEDs {3} in front and nine LEDs {1} in the upper left corner.

The four LEDs in front, two red (busy) and two green, are used as indicators under system

operations and the other nine green LEDs in indicates how many of the Fee buffers are

occupied.

7.2.2 LVDS

The busy output is an LVDS output to two LEMO {2a, 2b} connectors in front and goes via a

LVDS driver {2c} from FPGA1. The driver is an IC with four LVDS drivers, but only two

are used. In the back of the board a block with two RJ-45 {12b} connectors with an LVDS

driver {12a} and with the same setup as for the LEMO connectors in front.

7.2.3 Mezzanine card for RJ-45 connectors

Mounted on the BusyBox board are five blocks with eight RJ-45 {4} connectors used for

communication with the D-RORCs. Four mezzanine cards can be connected to contact points

{5} on the BusyBox board and each mezzanine cards holds six blocks with eight RJ-45

connectors in each block.

57

7.2.4 FPGA, SelectMAP and JTAG

The BusyBox use the Virtex-4 LX-40 {8a, 8b} with the ff1148 package from Xilinx. There

are 640 user programmable I/O pins that support LVDS 2.5 standard used to communicate

with the D-RORCs. The Virtex-4 can run on clock speeds up to 500 MHz, store 18 Kbits in

96 BRAM modules and has DCM to provide flexible clocking and synchronization.

A “Multiple device SelectMap bus” is used to programme the FPGAs, since two FPGAs can

be used with different firmware. Linux kernel device drivers have been developed so that the

Linux OS running on the DCS board can redirect the programming bit file to the FPGA.

There is a SelectMAP {17} interface on the BusyBox board which can be used to program

and read data from the configuration memory on the FPGA(s).

The BusyBox can also be programmed via JTAG {16} interface on the PCB. When one

FPGA is used a jumper on the PCB needs to be applied to bypass the missing JTAG chain.

7.2.5 Voltage Regulators and Power Supply

The BusyBox has three voltage regulators {15a, 15b, 15c} to supply power to the BusyBox

electronics. These regulators can be controlled via control inputs connected to the DCS board

via jumpers J1, J2 and J3. The jumpers select whether the voltage regulators; are controlled by

the DCS, always on or always off.

The power is supplied {11} from an XP Power AC-DC converter with 230 VAC input and 5

V/60 W output.

58

59

9 BusyBox DCS board
The DCS board was originally designed for the TRD and TPC sub-detector, but because it

was very versatile it has been adapted for the BusyBox and other instrument in ALICE

experiment. It is running a lightweight version of Linux and implements TCP/IP network

protocol and UART interface. The DCS board has a TTCrx chip to receive the LHC clock,

first level trigger accept and trigger messages. Each card runs a Fee server that interfaces with

the system it is connected to. Thus, it makes it possible to program the FPGA(s) and

read/write registers remotely from any location with an Ethernet connection.

Table 9-1: Connectors on the DCS board.

Type Description

1 Optical input Optical input from LTU or CTP emulator

2 UART RS-422 connection

3 Connector DCS bus connector to BusyBox PCB

4 Ethernet Ethernet link to communicate with DCS board

Figure 9-1: PCB layout of DCS board.

60

9.1 Communication with the DCS board

There are 54 general IO pins and 8 dedicated control pins used to connect {7} the DCS board

to the BusyBox board. The pins are for the DCS bus, clock, reset, L1 accept, Serial B, voltage

regulators and the SelectMAP interface.

9.2 Setting up DCS board Firmware to use with BusyBox

The DCS board firmware needs to be adapted for the BusyBox. If the DCS board is not

already modified, it needs to be reprogrammed to fit the BusyBox.

A description on how to update the DCS board flash device to work with the BusyBox is

given her:

http://web.ift.uib.no/~kjeks/wiki/index.php?title=Electronics_for_the_Time_Projection_Cham

ber_(TPC)#Update_of_the_DCS_Board_Flash_Device

61

10 The BusyBox Communication Protocol
This Chapter describes the communication protocol which is used by the BusyBox and the D-

RORCs to send commands and receive event IDs.

10.1 Introduction

Besides decoding trigger information the BusyBox must also be able to communicate with the

D-RORCs. The communication is necessary in the sense that the BusyBox needs to know

when to set the busy signal to the TTC system.

The BusyBox communication protocol was developed by Magne Munkejord as part of his

master thesis. His work included investigation of serial communication protocols,

implementation and testing. A robust serial communication protocol with the D-RORCs was

then achieved.

The protocol defines the mechanical, electrical and functional characteristics of a serial data

bus. It feature a LVDS coupled network interface, NRZ encoding, RS-232 like message

format and full duplex command/response protocol. The communication link has a data rate

of 40 Mbps.

Bus

Controller

Transmitter
Receiver

Transmitter

Receiver

Transmitter

Receiver

Bus

ControllerTransmitter
Receiver

Bus

ControllerTransmitter

Receiver

Bus

ControllerTransmitter

Receiver

.

.

.

.

.

.

BusyBox

D-RORC

Master Slave

D-RORC

D-RORC

LVDS

LVDS

LVDS

LVDS

LVDS

LVDS

Figure 10-1: BusyBox - D-RORC bus structure.

10.2 Physical Layer

The communication between BusyBox and the D-RORCs are done with LVDS and the

transmission lines are twisted pair cables with RJ-45 connectors. The TP cables are not longer

than 15 m, thus providing good signal integrity.

7.2.1 LVDS

LVDS (Low-Voltage Differential Signalling) is an electrical signalling system that can run at

very high speed over inexpensive twisted pair copper cables. LVDS is a differential signalling

system, which means that it transmits two differential voltages which are compared at the

receiver. LVDS uses this difference in voltage between the two wires to encode the

information.

The Virtex-4 FPGA is configured with the LVDS I/O standard specified as LVDS_25 for the

output and the input I/O block, DIFF_TERM, is enabled to set the internal differential

resistor.

62

7.2.2 Twisted Pair and RJ-45

Twisted pair cabling is a form of wiring in which two conductors, the forward and return

conductor of a single circuit, are twisted together for the purpose of cancelling out

electromagnetic interference from external sources. The RJ-45 is a standard eight wire

connector.

Standard straight Cat-5 twisted pair cables with RJ-45 connectors are used in the BusyBox –

D-RORC communication lines and the connection scheme is shown in Figure 10-2. The

wiring scheme is the same as used for 10/100 BASE-T Ethernet.

Figure 10-2: RJ-45 pin connection for BusyBox and D-RORC.

10.3 Message Formats

The communication on the bus consists of two types of messages: 1) Message sent from the

BusyBox, and 2) Message sent from the D-RORCs. All words sent are 16 bit long with an

RS232-like message format: 2 start bits, 16 data bits, 1 parity bit and 1 stop bit.

10.3.1.1 BusyBox message

The BusyBox message has two 4 bit words: The Command type word and the Request ID

word. The remaining 8 LSB bit of the message are unused.

Table 10-1: Bit map for BusyBox message.

15 – 12 11 – 8 7 - 0

Command type Request ID Unused

Command type The command type word is used to command the D-RORCs to transmit

event ID or to do error handling in relation to debugging.

Table 10-2: Command types.

Command type Bit Code Description

Request Event ID 0100 Request an Event ID from the D-RORC.

Resend last message 0101 Command the D-RORC to re-transmit the last message sent.

Force pop Event ID 0110 Command the D-RORC to pop one Event ID from its local
queue.

Force Request ID 0111 Command the D-RORC to store the attached Request ID.

Request ID The request ID word is generated by the BusyBox to control the event ID queue

in the D-RORCs.

63

10.3.1.2 D-RORC message

The D-RORC message is 48 bit long with 4 words: Request ID, Bunchcount ID, Orbit ID and

D-RORC ID. The message is divided into three 16 data bits before it is sent.

Table 10-3: Bit map for D-RORC message.

47 – 44 43 – 32 31 – 8 7 – 0

Request ID Bunchcount ID Orbit ID D-RORC ID

Request ID described in section 10.3.1.1.

Bunchcount ID The bunchcount ID is the number of bunch that is involved in the

collision.

Orbit ID The orbit ID is the number of times all bunches have rotated since the

start of the run.

D-RORC ID The D-RORC ID is the unique ID given to each D-RORC.

10.4 Transmission

Both the D-RORC and BusyBox run on the same nominal BC frequency, but do not share the

same clock source. This is defined as a plesiochronous system and refers to the fact that this

system runs in a state where different parts of the system are almost, but not quite perfectly in

sync, i.e. a sender and a receiver operate at the same nominal frequency and might have slight

frequency mismatch, which leads to a drifting phase.

The communication between BusyBox and D-RORC use NRZ line coding. A NRZ (non-

return-to-zero) code is a binary code in which 1’s are represented by one significant condition

and 0’s are represented by some other significant condition, with no other neutral or rest

condition. NRZ is not inherently a self-synchronous code, and needs some kind of

synchronisation technique to avoid bit slip.

The BusyBox has two clock domains, clock A and clock B. Clock A is 200 MHz and is

derived from clock B, 40 MHz, which is the nominal BC frequency in LHC. Clock B is used

for serial communication with the D-RORCs.

Messages sent from the D-RORCs are 48 bit long and commands sent from the BusyBox are

16 bit long. To avoid that the two communication devices get out of synch due to the system

being plesiochronous, long bit streams are avoided by dividing the D-RORC messages into

three 16 bit messages before they are sent to the BusyBox. In addition to this each bit is

cycled 5 times with respect to clock A, giving a 40 Mbps rate. At the receiving end the bit

stream is sampled into a shift register long enough to hold a complete messages. Then the

message is run through majority gates to determine the logic values of the capture data.

Figure 10-3: Message format.

Start bit 1 Start bit 2 Data bit 0 - 15 Parity bit Stop bit

Time (clock cycles)

0 5 10 15 90 95 100

Message

64

Figure 10-4: Sequence diagram for the BusyBox.

65

Start: Reveived messages from BusyBox

Store received request ID

Pop eventID from queue

Update output buffer

Transmit output buffer to BusyBox

New request ID?

New eventID available?

No

Yes

No

Yes

Figure 10-5: Sequence diagram for the D-RORC.

66

67

11 BusyBox User Guide
This chapter will give some insight in how to get started with the BusyBox, make changes to

the firmware and do hardware/firmware tests/simulations.

11.1 Xilinx ISE and QuestaSim files
File Folder Description

project_setup.tcl /trunk/ISE_projects/busybox_fpga1 TCL scrip to set up the
project for FPGA 1 in ISE
(TPC)

project_setup.tcl /trunk/ISE_projects/busybox_fpga1_solo TCL scrip to set up the
project for FPGA 1 solo
in ISE (PHOS)

project_setup.tcl /trunk/ISE_projects/busybox_fpga2 TCL scrip to set up the
project for FPGA 2 (TPC)

project_setup.tcl /trunk/simulation TCL scrip to set up the
project for simulation in
QuestaSim

trigger_receiver.mpf /vhdlcvs Project file for
QuestaSim (located in
the CVS repository, see
chapter 3.1)

11.2 Introduction

TCL scripts sets up projects in Xilinx ISE Design Suit and Mentor Graphics’ QuestaSim. All

the files needed for the BusyBox are in the SVN Repository
8
. The scripts automatically make

a project for each firmware versions and add all the files needed to simulate the design in

QuestaSim.

Furthermore, knowledge about the interaction with the BusyBox hardware is given on how to

program, read/write registers and test the design with triggers from a trigger emulator.

7.2.1 Project Setup

There are two main TCL scripts to setup a project. There is one script for QuestaSim to do

simulations, and three scripts for ISE Design Suite to make changes to the three different

firmwares
9
 and compile it.

In QuestaSim the TCL scrip is run under Tools > TCL > Execute Macro In Xilinx ISE

navigate to the directory where the TCL file is located and type xtclsh project_setup.tcl in the

transcript window.

The Trigger Receiver module uses CVS Repository and the trigger_receiver.mpf file setup

this QuestaSim project for simulation.

Note: Some editing may be done in the TCL files to setup the project correctly, i.e. the

location of where the repository is located on your computer.

8
 http://svn.ift.uib.no/svn/busybox_firmware

9
 There are three different firmware version for the BusyBox: busybox_fpga1_solo, busybox_fpga1 and

busybox_fpga2

68

11.3 Hardware Setup

...

DCSSIU

RCU

DCS

BusyBox

RJ-45

D-RORC

RJ-45 DIU

Ethernet

Ethernet

TTC

Busy

LVDS

DDL

PCI (Card is inside PC)

Figure 11-1: Hardware setup for experimenting with the BusyBox.

The hardware setup for testing the BusyBox is shown in Figure 11-2. All the devices has

interface to Ethernet and are Linux based. Thus, they can all be controlled by one PC with

Linux or Window operating system and Ethernet connection.

The CTP Emulator is connected to the BusyBox and Fee via optical cables to the DCS board.

TP cables from the busy outputs are connected from the BusyBox to the CTP Emulator with

LEMO plugs. TP cables are also used between the BusyBox an LDC (D-RORCs) and optical

cables from the Fee to the LDC.

Note:

The Fee must utilize a whole section with Fec (A or B) to work.

 The optical cables connected to the CTP Emulator must have an attenuator.

TP connection scheme for DCS Ethernet connector:

http://www.kip.uni-heidelberg.de/ti/DCS-Board/current/mechanic/DCS160Ethernet01.htm

11.4 Logging on to the DCS board

The DCS board mounted on the BusyBox is the easiest way to interact with the firmware.

From here registers can be accessed and new firmware can be programmed to the Virtex-4

chip(s).

69

Interfacing with the DCS board is done either trough Ethernet or UART. The DCS board runs

on a lightweight version of Linux and is access through SSH.

To login type:

ssh root@dcsxxxx,

where xxxx is substituted with the number of the DCS card. You will then be prompted for a

password.

11.5 RCU Shell

The rcu-sh, RCU shell, is a software that is "built around" the BusyBox firmware and

provides an interface for users to interact with it. The shell is used to read and write registers

in the BusyBox firmware.

Type rcu-sh after login on the DCS board. Type “h” and press “enter” to see available

commands in the RCU shell.

To send commands to the D-RORCs type:

 rcu-sh w 0x1 0x ‘--‘--‘,

where the first ‘--‘ (without the quotes) is the channel number in hex and the second ‘--‘

(without the quotes) is the command type in hex. E.g., to command the D-RORC connected to

channel 0 to pop its event ID, type: rcu-sh 0x1 0x0006.

Note: If the channel number provided is greater than the actual number of channels the

message is transmitted on all channels. The reply from the D-RORCs is stored in the RX

Memory module.

11.6 Programming the FPGA

The FPGA(s) will not be programmed automatically when the box is powered up. To check if

the FPGA(s) are programmed the right green LED {3} will be on. One can try to read some

register with the RCU shell, e.g: shell prompt on DCS board: rcu-sh r 0x1000. If the result is

“no target answer” then the FPGA is not programmed. Otherwise you should get the value

of the register.

The easiest way to program the FPGAs is to use the shell script "program". This script

should be located with the programming files for the FPGAS (*.bit) in the directory

"/mnt/dcscard/busybox-files/"

Prompt on DCS board: ./program <programmingfile1.bit> [<programmingfile2.bit>]

There should be four programming files in the directory:

1. busybox_fpga1.bit for the first of two FPGAs

2. busybox_fpga2.bit for the second of two FPGAs

3. busybox_fpga1_solo.bit for FPGAs on boards/boxes where only on FPGA is mounted.

4. busybox_dummy.bit will be used by the script to program the second FPGA if no second

programming file is given.

70

Note:

When two FPGAs are mounted then both must be programmed, or else the firmware will not

work.

The bit files to be programmed into the FPGA(s) must be put in the folder:

/nfs_export/dcscard, on kjekspc7.

11.7 Configuring the Firmware

Modify the shell script bbinit.sh to fit your setup.

11.8 Monitoring the BusyBox registers

Use regpoll.sh status to view most of the status registers of the BusyBox.

Type:

./regpoll.sh status

To display the channel registers use regpoll.sh channels.

Type:

./regpoll.sh channels

11.9 Resetting the BusyBox

To activate the global asynchronous reset of the Busy Box firmware, both FPGA(s), run "rcu-

sh fw r". This will reset all registers in the Busy Box (except for the block RAMs). The

configuration registers must be set again, including channel registers.

11.10 CTP Emulator

When testing or debugging with the BusyBox the CTP trigger emulator can be used.

Open a terminal window in Linux:

Type: ssh –X ltu@vme1, and enter the password when prompted.

Type: vmecrate ltu.

Then the VME menu is displayed:

Click Configuration and LTUinit.

Click Configuration and TTCreset.

Click CTP Emulator.

The CTP Emulator window pops up.

Next to the Sequence tag click L2a.seq and click Load sequence.

Click Start emulation.

71

So, when you click the Generate SW ‘Start signal(s)’ trigger sequences are sent to the

BusyBox.

