Introduction to ATLAS

- part 1: ATLAS Detector (and LHC)
- part 2: Physics programme in ATLAS

part 3: Event Reconstruction and Physics Performance

 part 4: Physicists' tools analyses in ATLAS

Wolfgang Liebig

Part 3: Reconstruction & Performance

- Physics objects overview
- Tracking
 - track representation, fit, performance
- muon performance
 - identification, performance, alignment
- vertex reconstruction
- b-tagging
- electron and photon reconstruction and performance
- jet reconstruction
- missing transverse energy
- tau lepton reconstruction

Reconstruction in a Nutshell

Electrons and Hadrons

4

Photons and Neutrons

Neutrinos, Jets, Vertex

Physics Objects in ATLAS

Performance: Basic Concepts

Efficiency of identification

- N_{true}(identified)/N_{true}(all)
- multiplicative for events with several physics objects
- efficiency determination
 - simulation: MC truth tells N_{true}(all)
 - data: methods using known physics and/or detector redundancy

Trigger Efficiency

- of event passing trigger (-> stream)
- of offline physics object (e.g. muon) being the one that fired trigger
- trigger eff. determination
 - simulation: combine L1-L2-EF
 - data: use offline object as 'truth'

Isolation efficiency

isolation requirement

object identified with additional

- Fake Rate of identification
 - N(misidentified)/N(identified)
 - simulation: MC truth tells misidentification
 - data: identification counts on sample known to be depleted of physics object

• **Resolution** of track parameters

- average difference between true and reconstructed parameters
- most common: momentum and impact parameter resolutions
- simulation: MC truth for parameters
- data: knowledge about physics process, detector redundancy etc.
- ideally resolution should be reflected by error on parameters

Tracking, Muons, B-tagging...

Tracking Software

- Charged particles leave a "cloud of hits" in the detector
 - further obscured by hits from noise, interactions with detector material, low energy curling tracks.
- Tracking software needs to identify particle trajectories, reconstruct their kinematic parameters
- Track model parameterizes trajectory with 5 parameters
 - stable particle moving in stationary
 B-field in vacuum described by 6 par
 - initial position along trajectory is free
- Local Parameters of track model
 - at an intersected reference surface:
 - 2 local coordinates
 - 2 angles

2011

- curvature q/p
- and their 5x5 covariance matrix

part 3: Performance

Track Parameters at Collider Detectors

Perigee parameterization:

- d_0 signed distance of closest approach to z axis
- z_0 z of closest approach
- ϕ_0 azimuthal angle at cl. app.
 - $\boldsymbol{\theta}$ polar angle of track

q/p charge-signed curvature

Perigee parameterization is basis for

- expressing track parameters at production vertex
 - for instance Lorentz vectors in physics analysis
- vertex finding algorithms
- b-jet tagging

2011

Track Propagation: Fields

• Equation of Motion of particle

$$rac{d^2m{r}}{ds^2} = rac{q}{p}\left(rac{dm{r}}{ds} imesm{B}(m{r})
ight)$$

- helix approximation not sufficient:
 - risk ~1% momentum bias (CMS?)
 - ATLAS InDet longer than solenoid
 - toroids produce inhomogeneous field
- B(r) inhomogeneous: diff. equation can only be solved numerically
- Runge-Kutta-Nystrom methods
 - divide integration interval in steps
 - each step becomes initial-value problem
 - solve equation for each step individually
- form the detailed track model
 - in ATLAS called **Propagator**
 - model of interactions in detector added separately

common tracking software designed to work in both Inner Detector and Muon Spectrometer

Multiple Scattering

Besides field effects, track propagation also affected by material:

- energy loss (discussed in part 1 of lecture)
- multiple scattering
 - charged particle deflected when passing through matter
 - random deflection is result of many small-angle Coulomb scatterings on the nuclei
 - Gaussian distribution for central 98% given by Highland formula

$$\sigma(\theta) = \frac{13.6 \operatorname{MeV}}{\beta cp} z \sqrt{x/X_0} (1 + 0.038 \ln (x/X_0))$$

expect E(ε) = 0, E(θ) = 0. σ(θ) is proportional to 1/p
x/X₀: thickness of material in fraction of radiation length

Track Fitting

- Now need an estimator for λ

 could e.g. use MINUIT (max. likelihood) but that is not the case in tracking
- A linear model is applied

$$\boldsymbol{h}_k(\boldsymbol{\lambda}) \simeq \boldsymbol{h}_k^0 + H_k \cdot \boldsymbol{\lambda}$$

 $-H_k = rac{d m_k}{d \lambda}$: Jacobian, typically a rotation or projection into measurement plane

Measurements are Gaussian distributed

 least squares estimator is best unbiased estimator

$$\chi^2 = \sum_{i}^{N_{\rm hits}} \left(\frac{m_i - h_i(\boldsymbol{\lambda}, \theta^{\rm scat})}{\sigma_i} \right)^2 + \sum_{j}^{N_{\rm planes}} \left(\frac{E(\theta^{\rm scat}) - \theta_j^{\rm scat}}{\sigma^{\rm scat}} \right)^2$$

part 3: Performance

14

Track Fitting in ATLAS

- Propagators transport λ vector $_{\sf f}$
 - $\boldsymbol{\lambda}_{k}^{k-1} = f_{k}^{k-1}(\boldsymbol{\lambda}_{k-1})$
 - simplified geometry used (simpler+faster than full simulation)
 - algorithm "AtlasExtrapolator"
- "Global χ^2 fitters" solve state λ_k lin. estimator for all measurements
 - needs inversion of large matrix dim=5+2N
 - fit follows trajectory closely, useful for large distances in ATLAS
 - mostly used in ATLAS
- Kalman filters in track fitting
 - steps through hits and updates parameters
 - progressive way of performing LSE, mathematically equivalent
 - fast: series of dim.5 matrix inversions
 - extended to estimate electron trajectories
 (bremsstrahlung, in use in ATLAS)

Propagation energy loss + scattering surface k+1 state λ_{k+1}

- Robust estimators
 - define 'pull' = $|m_k \hat{h}_k(\lambda)| / \sigma_k$
 - typically reject hit as an outlier if pull > 3.5
 - re-fit with outliers rejected if $prob(\chi^2) < 10^{-5}$
 - avoids bias or degraded resolution

surface k

Track Finding

- Choice of track
 finding algorithm
 depends on detector²⁰⁰
- Seed finding in e.g. silicon, TRT, muon
 chambers
 - robustness against
 combinatoric problems
 and detector ambiguities needed

- algorithms use Hough-transforms or look-up tables
- seeds or segments extended by combinatorial track following
 - associates hits in adjacent layers or muon segments in other stations
 - upon ambiguities branch seed following and evaluate best option
 - often fast versions of track fit employed in track following
- combination of inside-out (for prompt tracks) and outside-in seeding (e.g. γ conversions)

final track fit with precise material corrections and hit recalibration

ATLAS Commissioning Programme

- 1995-2004 test beams
 2004 combined test beam
 - software integration
 - first performance measurements for single particle detection
- 2006 cosmic rays (Inner Detector) 2008/9 cosmic rays (whole ATLAS as installed in P1)

- first performance measurements on real detector (tracks+muons)
- 2009 single beam events and 900 GeV collisions
 - correct some obvious performance mis-modelling (dead modules, missing large structures in detector geometry)
- 2010/11 p-p collisions
 - high statistics of tracks "illuminate" even remote MS chambers
 - high statistics of calibration objects, such as J/ ψ and Z decays to e,μ,τ
 - methods often tricky and similarly involved as a physics analysis

Inner Detector Calibration

- Pixel detector
 - 50x400µm pixel size
 - 14x110µm initial resolution (50µm/ $\sqrt{12}$)
 - instrinsic resolution down to 3µm by charge sharing & clustering algorithms
- SCT detector
 - 80 μm strip pitch gives 22 μm resolution
 - stereo angle produces ~500µm resolution in z direction (2nd coord.)

• TRT

2011

- ~150µm resolution
- Noisy channels masked, dead channels mapped
 - needs to be known for tracks not to be negatively scored
- Hit efficiency >99% in all 3 systems

Inner Detector Performance

Material Studies

Muon Reconstruction

- Segment-tagged
 - available for $|\eta| < 2.5$
 - most uniform coverage in η and pT
 - momentum from ID (ID and MS for MuGirl)

Combined

- available for $|\eta| < 2.5$
- ID and MS contribute to momentum accuracy

Stand-alone

- extend coverage to $|\eta|{<}2.7$
- momentum from MS
- poor position accuracy at IP
- calorimeter-tagged
 - available for $|\eta| < 2.5$
 - uniform efficiency near MS acceptance gap at $\eta \sim 0$
 - optimised for isolated muons

Run Number: 167776. Event Number: 129360643 Date: 2010-10-28, 10:41:18 CEST Z->µµ + missing E_T candidate event

Muon Efficiencies

N.Orlando, HCP 2011 rformance

Alignment of Tracking Detectors

- Detector positioning accuracy
 - $\sim 100 \mu m$ sensors on supports
 - 1-5mm for larger structures
- But: intrinsic resolution 5-100µm
- Positions need to be aligned
 - from data: large track (μ) statistics
 - from detector: optical alignment able to follow "fast" movements
- software alignment is based on minimizing track-hit residuals
 - X2=sum_trk(rTV-1r), r=r(alpha, lambda_i)
 - minimization has two big challenges: large # alignment parameters, occurrence of weak modes

- Large number of parameters
 - 3 translations + 3 rotations per module
 - ATLAS Pixel+SCT: 5832 modules
- Two algorithmic approaches
 - global chi2: single large matrix including all correlations, fast solving techniques
 - local chi2: solving many small systems, correlations covered by iterations

Weak modes

- global deformations that do not add to alignment χ^2 but affect physics quantities
- curls, twists
- were studied beforehand but real detector is different

Muon Momentum Resolutions

- Z->µµ decay sensitive to detector effects
 - observed width is superposition of natural decay width and detector resolution
 - Z becomes excellent probe for momentum resolution and scale bias

Momenta on MC smeared before entering physics analyses

 reduces/quantifies systematic error contribution from cuts, kinematics etc

Highest p_T Muon Performance

- Muon momenta at $p \sim 1$ TeV estimated mainly by MS
 - high field integral, lever arm, hit precision in Muon Spectrometer (MS)
 - low momenta determined by ID (material effects in calo+MS strong)
 - TeV scale momentum precision depends on MS alignment
- Precisions alignment of huge MS is a challenge
 - track-based alignment needed to complement and probe quality of optical alignment

High p_T Performance

- Methods to achieve precision alignment
 - special runs: solenoid off, toroid on
 - overlaps between station sectors in $\boldsymbol{\Phi}$
 - cosmic rays (mainly 2009 preparation, see previous slide)

- Sector 4 (small) Sector 5 (large) RFC 1 R
- Solenoid-off runs:
 - track muons using momentum from ID (mat. effects correctly parameterized)
 - study sagitta in 3-point system: should be 0 for straight tracks

- difference from 0 allows alignment
- optical alignment follows movements when toroids switched back on (!)
- typical precision now $< \sim 100 \mu m$

Vertex Reconstruction

Vertex Finding

- Primary vertexing at LHC combined finding and fitting adaptive multi-vertex fitters
 - iterative, reweighted Kalman filter
 Kalman filter = adds tracks progressively to vertex candidate
 - robust fitter: outlying tracks are down-weighted automatically

part 3: Perf

- new vertex candidate formed with outlying tracks (minimally 2 tracks form vertex)
- list of vertex candidates is input to next iteration, vertices compete against each other for tracks

Beam spot

- cloud of primary vertices averaged over short period in time
- routinely determined in data-taking
- beam spot then used as constraint in primary vertex finding

Measures in-time pile-up

 $-\mu$ = number of pile-up vertices

Vertex Reconstruction Perf

Number of Tracks per Vertex

b-Jet Tagging

- Spatial tagging (or life-time tagging):
 - B hadrons have a significant flight path length:
 - E(B) ~ 50 GeV ⇒ L ~ 5 mm
 - Secondary vertex in jets.
 - Tracks with high positive impact parameter.
- Soft lepton tagging: Useful to commission other taggers
 - Low pT electron/muon from B/D decay.
 - Efficiency limited by (B/D I) branching ratio.

b-tagged jet

X B-Tagging Inventory

- Simple taggers: robust, used on initial data (2010)
 TrackCounting: Counts tracks with high IP
 JetProb: Track compatibility with the primary vertex
 SV0: flight length significance of the SV
- Advanced taggers : After commissioning, used for 2011 physics results
 IPnD (n=1,2,3) : IP based likelihood tagger
 SVn (n=1,2): SV based likelihood tagger
 JetFitterX (X=Tag,TagNN,COMB,COMBNN)
- Soft lepton taggers : Limited efficiency, also tool for calibration
 - SoftMuonTag
 - SoftElectronTag

B-Tagging Challenges

strong dependence on kinematics

- low p_T and high $|\eta|$: multiple scattering and material interactions
- high p_T : two effects to cope with:
 - 1. collimated tracks -> limits of pattern recognition
 - 2. 'late' B decays in detector ($p_T \sim 200$ GeV: 8% decay after b-layer)
- shown for ttbar events: efficiency of IP3D+SV1 tagger at cut w>4

JetFitter

• B decay is actually a decay chain:

 $- B \rightarrow D \rightarrow K/\pi$ with significant D decay length

 SV taggers improve b-tagging but do not use optimal/accurate information

- B->D cascade approximated by single vertex (# tracks and resolution not enough to fit 2nd + 3rd)
- contaminated with light flavour jet (K_0 , Λ decay)
- statistical issues with 1-vertex assumption (χ^2 , cov)
- JetFitter algorithm solves issues with a multivertex fit in 1 dimension along the jet axis: PV – B-vertex – D-vertex
 - robust against small number of tracks (1)
 - displacements from common jet axis small
 - Kalman filter based
- B hadron discriminators extracted from
 B-D system (m, E/E_{iet}, σ(d)/d)

indeed rejection of light jets improved

b-Tagging Performance

- Comprehensive studies of all b-taggers
 - input variables and output weights
 - relative comparisons in different kinematic regions
 - efficiencies
- Powerful combination IP3D+JetFitter

Electrons, Jets, Missing E_T, Tau

Electron Identification

- standard identification: LAr el-mag. calorimeter seeded
 - seeded by clusters reconstructed in LAr by a sliding window algorithm
 - attempt to match a track to the cluster
 - attempt to match a conversion vertex to the cluster

Definition of objects

- electrons: cluster + track
- photons: two categories:
 - 1. unconverted photon
 - = cluster + no track, no conversion vertex
 - 2. converted photon = cluster + conversion vertex

additional identification: track seeded

- tight pre-selection cuts to minimize false identification
- keep standard track+cluster if track is the same
- improves efficiency at low energies, ET<5GeV

forward electrons

- uses topological clusters, no InDet information $|\eta|$ >2.5
- dedicated identification algorithm

Electron Energy Reconstruction PAT

egamma objects are massless, with four-momentum defined:

- For electrons: if σ < 3 and track is not low p_T TRT-only, the energy is from combining the cluster energy and the track momentum; else it comes from the cluster. φ is from the track, and η comes from the track, unless the track is TRT-only, in which case, the η is from the cluster pointing
- For unconverted photons, energy is from the cluster. η comes from cluster pointing, and φ is from the cluster position. From 15.8, φ is corrected for the primary vertex.
- ★ For converted photons, energy is from the cluster, φ is from the track, and η comes from propagating from cluster to conversion vertex, unless the tracks are TRT-only, then cluster pointing

Electron Performance

Electron Performance

Photon Performance

- more difficult to estimate
- conversions are main issue
 - main contributor to inefficiency, well known from simulation
 - studies therefore focus on understanding the material
 - conversions complement other material studies (slide 20)

€18000

Eutries/ 14000 12000

10000

8000 6000

4000 2000

R [mm]

Jets Algorithms

- Task: estimate direction and energy of prompt hadrons from energy map in Calo
- Geometrical cone algorithms simple but not infrared safe
- Kt/Cambridge clustering algorithms

 define distance and limit

$$d_{ij} = min(p_{Ti}^2, p_{Tj}^2) \frac{\Delta R_{ij}^2}{R}$$
 and $d_{iBeam} = p_{Ti}^2$

– keep merging two smallest distance objects i,j into new proto-jet until $d_{ij} > d_{iBeam}$

Jet Clustering Algorithms

Kt algorithm is collinear and Infrared safe. But has inconvenient :

- Irregular, complex shape
- "vacuum cleaner" effect

Some variants have been studied : replace distance definition by

$$d_{ij} = min(p_{Ti}^{2p}, p_{Tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \quad \text{and} \quad d_{iBeam} = p_{Ti}^{2p}$$

P-A Delsart, C. Doglioni

- p=1 : Kt algorithm. Priority to low Pt constituents
- p=0 : Cambridge variant. Purely geometrical
- p=-1 : Anti-kt variant. Priority to high Pt constituents

4

Anti-kt very recent (Salam, Cacciari, Soyez arXiv:0802.1189, independently of Atlas development [Atlas CVS ;)]), has several advantages.

Jet Reconstruction Performance

Diff (%) (Data-MC)

- J/p Mainly energy resolution and reliability of jet energy, the jet energy scale factor (JES or JSF)
- various in-situ methods - in situ = measure on data
- look at known balanced events, like di-jet
- Another effect: out-of-time pile-up
 - Calo sensitive to energy from preceding collision
 - Energy may be overestimated
 - study by comparing to track-jets (hits on track have tighter timing)

Missing Transverse Energy

- In hadron collisions a significant unmeasured amount of energy 'escapes' in z (=beam) direction
- total momentum in transverse direction is 0, conserved in collision
- missing total p_T or E_T points to weakly or non-interacting particles
 – neutrinos, new physics

 $E_{T}^{miss} = -\sum_{particles}(E_{T})$

- simple strategy: sum up calo clusters and energy of escaped muons in MS
- best strategy: take calibrated physics objects, overlap removal, add unassociated clusters
 - final, 'refined MET'

Part 2, slide 41 (WW event)

A. Yurkewicz

Inputs to Refined Missing ET

Electrons / Photons / Jets / Taus

- Overlap resolution needed for calorimeter-based signals
- Object quality cuts change MET
- Use best calibration for each

Muons

- Use good reconstructed muons
- Possible source of fake MET
- Avoid double-counting signal in calorimeters

Remaining Clustered Energy

Data Quality/ Monitoring

- Important to use all real signals in calorimeters, but ignore noise
- Need to derive calibration for soft signals
- Improve measurement with tracks

 Physics analyses must exclude/ understand data with detector problems

Missing ET Performance

Tau Reconstruction

R<0.2

Only hadronically decaying taus considered Decay to odd-numbered charged particles

- Track-seeded and calo-seeded candidates
 - Tracks(p₇>6GeV) used as seed.
 - Collected tracks(p_T >1GeV) around seed in cone ΔR <0.2, use them to define η , φ .
 - Look for jet (Anti-Kt algorithm with radius ΔR<0.4 on topological clusters) around track system(10GeV, ΔR<0.2)
 - Collected tracks(p_T >1GeV) around seed in cone ΔR <0.2.
 - Reconstruct π^0 subclusters
 - Calorimetric E_{τ} with H1 calibration, E_{τ}^{flow} from tracks and calo.

Tau Reconstruction

- Two more categories with only one of the two seeding strategies
- Calo-seeded only candidates
 - jet seed (not yet used in Calo+Track seeded)
 - collected tracks (pT>1GeV) around seed in cone R<0.2
 - calorimetric $E_{\scriptscriptstyle T}$ with calibration
- Track-seeded only candidates
 - only a few % of all tau candidates
- Large number of identification variables form set of discriminators

 including tau veto when overlap with electron/muons
- Commissioning:
- Only three variables are used.
 - Electro Magnetic Radius
 - Track Radius
 - p_T / E_T
- Cut optimization (TMVA)

For 30%(tight), 50%(medium), 70%(loose) efficiency.

Tau Identification Performance

Summary

- Discussed the different physics objects in ATLAS
 - outline of principal identification algorithms
 - methods to determine and improve performance on data
 - current performance, differences to simulation
- Found a remarkable performance close to design precision almost everywhere
 - only after 2 years of data-taking, previous experiments needed more time
 - a lot of effort has gone/is going into object identification and performance needs to be understood as part of physics analysis
- Last lecture will go into practical details

Further Reading

Track and Vertex reconstruction, R. Frühwirth and A. Strandlie, Rev.Mod.Phys 82 1419 (2010) http://rmp.aps.org/abstract/RMP/v82/i2/p1419_1

Tracking Performance Results https://twiki.cern.ch/twiki/bin/view/AtlasPublic/InDetTrackingPerformanceApprovedPlots

ATLAS conference notes https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES

ATLAS papers https://twiki.cern.ch/twiki/bin/view/AtlasPublic

- Electron Paper http://arxiv.org/abs/1110.3174
- Missing ET Paper http://arxiv.org/abs/1108.5602

Identification of b-jets and..., N.G. Piacquadio, CERN-Thesis-2010-024 https://cdsweb.cern.ch/record/1243771

The anti-kt jet clustering algorithm, M. Cacciari et al, arxiv: 0802.1189 [hep-ph] http://arxiv.org/abs/0802.1189

