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Abstract 

The readout electronics in PHOS and TPC – two of the major detectors of the ALICE 
experiment at the LHC – consist of a set of Front End Cards (FECs) that digitize, 
process and buffer the data from the detector sensors. The FECs are connected to a 
Readout Control Unit (RCU) via two sets of custom made PCB backplanes. For 
PHOS, 28 FECs are connected to one RCU, while for TPC the number is varying 
from 18 to 25 FECs depending on location. The RCU is in charge of the data readout, 
including reception and distribution of triggers and in moving the data from the FECs 
to the Data Acquisition System. In addition it does low level control tasks. The RCU 
consists of an RCU Motherboard that hosts a Detector Control System (DCS) board 
and a Source Interface Unit. The DCS board is an embedded computer running Linux 
that controls the readout electronics.  

All the mentioned devices are implemented in commercial grade SRAM based Field 
Programmable Gate Arrays (FPGAs). Even if these devices are not very radiation 
tolerant, they are chosen because of their cost and flexibility, and most importantly 
the possibility to easily do future upgrades of the electronics. Since physical shielding 
of the electronics is not possible in ALICE due to the architecture of the detector, the 
radiation related errors need to be handled with other techniques such as firmware 
mitigation techniques. 

The main objective of this thesis has been to make firmware modules for the FPGAs 
reciding in different parts of the readout electronics. Because of the flexibility of the 
designs, some of them have, with minor adaptations, been applied in different devices 
surrounding the readout electronics. Additionally, effort has been put into testing and 
integration of the system. In detail, the work presented in this thesis can be 
summarized as follows: 

• Firmware design for radiation environments. All firmware modules that are 
designed are to be used in a radiation environment, and then special 
precautions need to be taken. Additionally, a state-of-the-art solution has been 
designed for protecting the main FPGA on the RCU Motherboard against 
radiation induced functional failures. 

• Implementation of Trigger Handling for the TPC/PHOS Readout Electronics. 
The triggers are received from the global trigger system via an optical link and 
are handled by an Application Spesific Integrated Circuit (ASIC) on the DCS 
board. The problem is that the DCS board might have occasional down time 
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due to radiation related errors, so a special interface module is designed for the 
main FPGA on the RCU Motherboard. This module decodes and verifies the 
information received from the trigger system. As it is a generic design it has 
also been implemented as part of the BusyBox. The BusyBox is an important 
device in the trigger path of the TPC and PHOS sub-detectors.  

• Implementation of the TPC/PHOS Front-end Electronics Detector Control 
System. This point includes several parts that are listed from bottom up: 

o PHOS FEC Board Controller. The PHOS FEC Board Controller is the 
lowest level of the DCS. It is an SRAM based FPGA that is in charge of 
monitoring the health status of the given FEC and configure vital parts 
of the PHOS Front-end. The design is based on the TPC Board 
Controller design, but it is functionally extended and has increased 
robustness against radiation related errors and other external errors.  

o Active Partial Reconfiguration Solution: A vital part of the Fee DCS is 
the Active Partial Reconfiguration Solution that deals with radiation 
related errors. This state-of-the-art design enables the possibility to 
clear any radiation related error in the configuration memory of the 
main FPGA on the RCU motherboard while not interfering with the 
operation of the design.  

o RCU main FPGA DCS interface. A small module translating the DCS 
bus protocol to an FPGA internal RCU bus protocol. 

o TPC/PHOS DCS board firmware. The DCS board firmware 
implements the communication path down to the registers on the RCU, 
and upwards towards the ARM CPU. As the DCS board might, from 
time to time, reboot because of radiation related errors, effort has been 
put into ensuring that this does not affect the data flow on the RCU 
Motherboard. Because of the flexibility of the DCS board, this 
firmware has been adapted to several other motherboards in the system. 

• Testing and Verification of all firmware modules. All firmware modules have 
been extensively verified with computer simulation before being tested in real 
hardware.  

• Maintenance of the DCS board for TPC/PHOS and of the different Fee 
firmware modules in general.  
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• System Integration and System Level Tests. A big contribution has been done 
integrating and testing all the modules and sub-systems. This concern both 
locally on the RCU and the BusyBox, as well as making all the devices play 
together on a larger scale.  

As the presented electronics are located in a radiation environment and are physically 
unavailable after commissioning, effort has been put into making designs that are 
reliable, scalable and possible to upgrade. This has been ensured by following a 
systematic design approach where testability, version management and 
documentation are key elements. Some parts of the work described in this thesis have 
been published and presented in international peer reviewed publications and 
conferences.  
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Chapter 1  
 
 
The ALICE Experiment 

This chapter gives a brief introduction to the ALICE experiment at CERN. Quark 
Gluon Plasma is discussed since the main goal of ALICE is to investigate its 
properties. An overview of the ALICE detector with a brief introduction to the 
various parts of the system is then given. The PHOton Spectrometer and the Time 
Projection Chamber are described more in detail, while the other sub-detectors are 
mentioned briefly. In addition the three main logical systems of the ALICE detector 
are described on an overall system level: The Trigger System, the Data Acquisition 
System (including High Level Trigger) and the Detector Control System. 

1.1 Introduction 

The Large Hadron Collider (LHC) is located at CERN1 near Geneva, Switzerland. 
CERN is the largest research facility in the world for particle and nuclear physics.  
The LHC is a circular particle accelerator with two adjacent beams moving in 
opposite directions. In four different locations the beams intersect, allowing for 
collisions. The experiments using the Large Hadron Collider are located at these 
intersections, of which ALICE (A Large Ion Collider Experiment) is one. The main 
goal of ALICE is to study the properties of Quark Gluon Plasma. Quark Gluon 
Plasma is a state of matter defined by the quarks and gluons no longer being bound 
together and confined in Hadrons.  

The ALICE detector is at the time of writing in the final stage of commissioning. It 
has an onion like architecture with several different sub-detectors surrounding the 
beam pipe in layers from inside to out, where it is wrapped by a magnet (5 meters tall 
and wide). All of the sub-detectors are tailor-made to detect different particles created 
in the collision. 

                                              
1 CERN is an acronym for Conseil Européen pour la Recherche Nucléaire which was a provisional council for setting up 
the laboratory, and was established by 11 European governments in 1952. Currently there are 20 member countries and 8 
countries/organizations have so called observer status. http://www.cern.ch) 
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This thesis focuses on the instrumentation for two of the ALICE sub-detectors; the 
Time Projection Chamber (TPC) and the PHOton Spectrometer (PHOS), since most 
of the electronics are shared between the two sub-detectors. The TPC detector is the 
main tracking device in ALICE, and is a gas filled barrel exposed to both a magnetic 
and an electric field. Charged particles crossing the gas will ionize the atoms in the 
gas and then the electrons will drift in electric files to the end caps of the barrel. By 
measuring the arrival of the electrons at both ends of the chamber, the TPC will 
reconstruct the paths of the original charged particles. The electronics used for data 
readout are located at the end of the chamber directly behind the detector pads to 
minimize channel noise and crosstalk. This location implies that the radiation the 
electronics is there to measure will also be potentially harmful to the electronic 
devices. The PHOS detector is one of the outermost detectors in ALICE and is 
detecting photons from the collision. It is made of lead tungstate crystals, in which 
electromagnetic showers will be generated when the crystal is hit by high energy 
photons. The readout electronics are situated directly behind the crystals, and as for 
TPC, located in a radiation environment. 

The data readout in ALICE is trigger based. This means that any collision will be 
detected by a group of fast detectors that will notify a central trigger system. The 
central trigger system will distribute triggers to the different sub-detectors to start 
buffering and readout of data. When the data is read out, it is moved from buffers in 
the readout electronics via an optical link to computer farms where further analysis is 
done before the data is stored to disk. As the potential data rate from the readout 
electronics sub-systems is approximately an order of magnitude higher than what can 
be stored to disk, or even transmitted over the optical data links, data processing and 
compressing are done by the readout electronics. 

Because of the flexibility, the cost and the possibility to easily do future upgrades of 
the electronics, it has been decided to make extensive use of commercial SRAM 
based Field Programmable Gate Arrays (FPGAs) in the readout electronics. The other 
side of the coin is that these devices are generally not very radiation tolerant. The 
architecture of the ALICE detector is such that physically shielding of the electronics 
is not possible, which impose challenges in designing the electronics. This implies 
that the concern with radiation related errors need to be handled with other techniques 
such as firmware mitigation techniques. 

The radiation environment is not the only challenge when designing the readout 
electronics. As the readout electronic devices are located directly on the detector 
devices, they are physically unavailable as soon as the ALICE detector is fully 
operative. It is vital that they are operated under stable temperatures and that if any 
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node in the system is misbehaving, it should immediately be powered off and 
analyzed whenever possible. This implies that a control system that can be operated 
remotely is needed.  

1.2 Large Hadron Collider 

The LHC is currently in the final stages of commissioning, and will be started at the 
10. of September 2008. When finished, it will be able to accelerate hadrons to higher 
energies than any particle accelerator has ever done. The LHC has a circumference of 
27 km and has two adjacent beam pipes where bunches of particles are accelerated to 
a beam energy of 5.5 TeV per nucleon for lead nuclei beams and 7 TeV for proton 
beams. The bunches are then collided within 4 experimental areas where four main 
experiments are located: 

• ALICE (A Large Ion Collider Experiment): ALICE is specially designed to 
look for Quark Gluon Plasma (see section 1.3) 

• ATLAS (A Toroidal LHC ApparatuS): ATLAS is mainly looking for the Higgs 
boson, which can be understood as a missing piece in the standard model. 

• CMS (Compact Muon Solenoid): CMS is also investigating physics in the TeV 
range and looking for the Higgs boson. 

• LHCb (LHC beauty): LHCb is designed for investigating physics related to the 
bottom quark, particularly investigating CP violations in the b hadron 
interactions. 

Additionally there are a few smaller experiments sharing the experimental areas 
doing forward physics2. 

                                              
2 The experimental definition of forward physics is “All processes in which particles are produced at small polar angles (i.e. 
large rapidities)”. Citation from: Pierre Van Mechelen - "Forward" Physics at the LHC - HERA-LHC Workshop - DESY - 
March 15, 2007 
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1.3 ALICE Physics 

 
Figure 1-1: High Energy Physics Phase Diagram. From [1]. 

ALICE will study the properties of Quark Gluon Plasma. Normally, quarks can not 
exist alone, only when they are bound together into hadrons by the force carrier for 
the strong force (gluons). If trying to separate them, a new quark - antiquark pair 
would be created in the force field. When the temperature and/or pressure are high 
enough, the hadrons undergo a phase transition and Quark Gluon Plasma is formed. 
In Quark Gluon Plasma the quarks and gluons are deconfined like molecules in a gas. 
Figure 1-1 is a phase diagram showing the different phases of matter from hadrons to 
Quark Gluon Plasma. According to the Big Bang theory, Quark Gluon Plasma is 
believed to have existed up until the universe was 10-5 seconds old. At this time the 
pressure and temperature had dropped so much that a process called freeze-out was 
taking place, in which the quarks and the gluons bound together to form different 
kinds of hadrons, amongst others the basic building blocks of nature; protons and 
neutrons. During the Pb-Pb collisions LHC will generate enough energy to create 
Quark Gluon Plasma. 

It is not possible to observe Quark Gluon Plasma directly, only so called footprints 
can be detected. Details on the experimental observables can be found in for instance 
[2]. 
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1.4 ALICE Detector  

1.4.1 Overview 

 
Figure 1-2: The ALICE detector. From [3] 

Each of the collisions in LHC is called an event. An event produces a lot of 
secondary particles. Some of these secondary particles are so short lived that they 
decay long before leaving any detectable tracks. In order to look for the various decay 
products, ALICE is designed to be a multi component detector that studies different 
aspects of an event. Each component is used for measuring particle energies and 
momentum, and/or for distinguishing different particle types. 

The ALICE detector is optimized to study heavy ion collision. The onion-like 
structure where the various sub-detectors are located in different layers from inside to 
out is shown in Figure 1-2. The interaction point is in the centre of the detector. 
Except for ACORDE (ALICE Cosmic Ray Detector), all the barell sub-detectors are 
located inside the L3 magnet, which is a 12.1 m x 5.75 m magnet generating a 
magnetic field of 0.5 T[3]. The data readout of ALICE is trigger based. This means 
that certain fast detectors are contributing to triggers that are distributed to the sub-
detectors. The sub-detectors then start data buffering and readout operations.  

The functionality of TPC and PHOS will be discussed in the next sections since the 
work described in thesis are implemented for these two sub-detectors.  
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1.4.2 Time Projection Chamber (TPC) 

 
Figure 1-3: Layout of the ALICE TPC. To the left a three dimensional view 
and to the right are some details concerning the field cage.  

The TPC [3, 4] is the main tracking detector in ALICE. As shown in Figure 1-2 it is 
surrounding the beam pipe outside of the Inner Tracking System detector. The layout 
of the TPC is shown in Figure 1-3. The TPC is a cylindrical gas volume of 88 m3 that 
is divided in two drift regions by a high voltage electrode. The field cage seen in the 
figure has an inner radius of about 85 cm, and an outer radius of about 280 cm, and 
an overall length along the beam direction of 510 cm.  

In the field cage the charged particles formed in the collisions ionize the gas and 
electrons drift in the electric field towards the end plates at each side of the detector. 
The gas in the ALICE TPC is a mixture of Ne, CO2 and N2, which gives the wanted 
ionization properties and diffusion inside the field cage. The electrons in this gas 
mixture have, for an electrical drift field that is 400 V/cm, a drift velocity of 2.83 
cm/μs. This means that electrons starting from the central plane take about 88 μs to 
reach the end plates.  

Each of the two end plates is divided into 18 sectors where conventional Multi Wire 
Proportional Chambers provide the required charge amplification. The readout plane 
is divided into 570132 pads of different sizes. As the track density is highest near the 
centre of the detector, the wire spacing and the pad size are smaller in that location to 
provide better spatial resolution. 

Directly behind the readout pad plane is the location of the Front-end electronics 
(Fee) of the TPC. As a consequence, the Fee are located in a radiation environment 
with all the challenges this implies. 
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1.4.3 PHOton Spectrometer (PHOS) 

 
Figure 1-4: The PHOS detector. To the right are the 5 PHOS modules; to 
the left is the PHOS module with strip units installed onto cooling plates. 

The PHOS detector [3, 5] is one of the outermost detectors in Figure 1-2, at a 
distance of 460 cm from the interaction point. In the initial run there will only be one 
PHOS module present, but the final configuration holds five modules with an angular 
coverage of 5*20 degrees, as shown to the right in Figure 1-4. The pseudo rapidity 
coverage is -0.12 to 0.12. 

Each PHOS module is built up of two different sub-detectors. The main detector is a 
highly segmented ElectroMagnetic Calorimeter (EMC), while the second detector is a 
Charged Particle Veto (CPV) detector. The EMC is measuring electromagnetic 
showers of up to 100 GeV via a large matrix of PbWO4 crystals. The EMC for one 
PHOS module is segmented into 3584 detection cells, that each consists of a crystal 
and an avalanche photo diode. To increase the light yield and hence the energy 
resolution of the PbWO4 crystals, the nominal operating temperature of the EMC 
modules are set to -25°C3. The crystal strips are located in a cold enclosure, whereas 
the Fee are located outside this enclosure.  

The CPV detector is a Multi Wire Proportional Chamber that is placed on top of the 
EMC module with a distance of about 5 mm. The purpose is to discriminate charged 
particles from neutral particles. The CPV detector is currently only in a prototype 
version and will not be installed at the start up of LHC. 
                                              
3 The first installed PHOS module will operate at room temperature during the first year. 
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1.4.4 Other Detectors 

In addition to PHOS and TPC there are numerous other sub-detectors in ALICE, of 
which some are marked in Figure 1-2. The detectors can be divided into the central 
detectors and the forward detectors. The central detectors (or barrel detectors) are the 
detectors located around the collision point, while the forward detectors are located 
along the beam axis on the edge of the magnet. PHOS and TPC are central detectors. 
Details concerning the various sub-detectors of ALICE can be found in [3]. 

Detectors other than TPC and PHOS that are interesting in the context of this work 
are especially the ElectroMagnetic Calorimeter (EMCal) and the Forward 
Multiplicity Detector (FMD), since these detectors share many of the electronic 
components with TPC and PHOS. The location of EMCal is given in Figure 1-2. 
FMD is one of the forward detectors and measures the charged particles emitted at 
small angles relative to the beam. Of other important physics detectors are the Inner 
Tracking System, Transition Radiation Detector (TRD), Time of Flight Detector, the 
High Momentum Particle Identification Detector and the Muon Spectrometer. One of 
the main electronic components of TPC and PHOS, the DCS board (see section 0), is 
also in use on the TRD detector of which it was originally designed for. 

The Level 0 (L0) trigger (see section 1.6.2) in ALICE combines the input from 
detectors with fast trigger capability (T0, V0, Silicon Pixel Detector (SPD), TOF, 
PHOS, EMCal, Muons, ACORDE). The T0 detector measures the event time with 
very good precision (< 25 ps). The V0 detector is used as minimum bias trigger and 
for rejection of beam gas background. ACORDE triggers on cosmic rays for 
calibration and alignment purposes. As PHOS and EMCal are electromagnetic 
calorimeters they detect a collision within the (L0) trigger decision window and can 
then participate in the trigger generation. 

1.5 Radiation Environment of the Fee 

One of the major challenges in building the ALICE detector is that the radiation 
which the detector shall measure is also potentially harmful for the electronics that 
will do the actual measurements.  

The potential radiation damage to a device is dependent on the particle charge and 
energy. Simplified, a particle with high charge and low energy is more ionizing and 
thus more damaging than a particle with low charge and high energy. 
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There two types of radiation effects that are of concern for the electronics: 1) the 
cumulative effects, which are related to the total dose4 that the electronics are 
exposed to over the lifetime of the project, and 2) the single event effects, which are 
caused by a single particle. Radiation effects in electronics are discussed in section 
4.1. 

Due to the relatively low total dose of < 6 Gy cumulative effects are expected to be of 
little concern in the TPC electronics [6]. However, in the location of the TPC Fee, 
simulations of the radiation environment show a substantial amount of energetic 
hadrons (E > 10 MeV). A flux5 of maximum 400 particles/cm2/s can be expected at 
the innermost part of the TPC. The flux is decreasing further away from the collision 
point and in the outermost part of the TPC the expected flux is ~130 particles/cm2/s. 
Due to their low ionizing capability, low charge and high energy, these hadrons are 
not expected to directly cause a single event effect. Instead they can interact with the 
silicon nuclei producing highly ionizing secondary particles capable of inducing 
single event effects. Combined results from the simulation of the radiation 
environment and from irradiation tests can be used to predict the expected number of 
single event effects and functional errors in the electronics [7, 8]. 

For PHOS no similar simulations have been performed, but since PHOS is the 
outermost detector and the electronics are shielded by the crystals, both the flux and 
total dose for PHOS is expected to be significantly lower. However, this does not 
mean that the potential radiation effects on the electronics in PHOS ca be ignored. 

1.6 Online Systems for the ALICE TPC/PHOS Electronics 

1.6.1 Experiment Control System 

The different online systems in ALICE are controlled by a single overlying master 
system: the Experiment Control System (ECS)[9]. The ECS has several tasks. 1) It 
provides the operators with a unified view of the experiment and a central point from 
which to steer the experiment operations. 2) It permits independent and concurrent 
                                              
4 The dose (or total ionizing dose) is the energy deposited by the charged particle in a given material and is measured in 
Gray (Gy). 1 Gy corresponds roughly to the generation of 4.1011 electron-hole pair in 1 cm3 silicon. 
5 The flux is the number of particles passing through a given area per time unit, and can be considered as the intensity of 
the radiation. Flux is measured in particles/cm2/sec. 
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activities on parts of the experiment by different operators. 3) It coordinates the 
operations of the control systems active on each detector: the trigger control, the 
detector control, the Data Acquisition (DAQ) run control, and the High Level Trigger 
(HLT) control. These sub-systems exist in parallel to each other, having no or little 
cross communication between them. 

ECS

HLT DAQ TTC DCS
 

Figure 1-5: The different online system discussed in the subsequent 
sections in context of the ECS. From [9]. 

1.6.2 Trigger, Timing and Control System 

The heart of the ALICE Trigger, Timing and Control (TTC) System [3, 9] is the 
Central Trigger Processor (CTP) [10]. The CTP is designed to select events 
containing potential interesting physics at rates that are scaled down to suit the 
restrictions imposed by the bandwidth of the DAQ system and the HLT. One of the 
main challenges for the ALICE trigger is to make optimum use of the different sub-
detectors that are varying both in readout time and detection time. It is also important 
that the trigger selections are done in a way that is optimised for different running 
modes, normally Pb-Pb and p-p. The triggers generated by the TTC system are split 
into a three level hierarchy, of which the first two are considered as a fast first 
response to the sub-detectors. Each level of trigger is filtering out events that for 
some reason are not considered interesting. The L0 trigger is the fastest trigger and 
reaches detectors at 1.2 μs and is too fast to consider all the trigger inputs. A Level 1 
accept (L1a) trigger arriving at the detectors at 6.5 μs includes all remaining fast 
inputs. All in all there are 50 potential inputs for the L0 trigger and 24 inputs for the 
L1a.  
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Figure 1-6: Sketch of the Fee for PHOS detector that shows how PHOS 
acts as a trigger detector as well as how PHOS uses triggers generated by 
CTP for data readout. 

The final level of the trigger, the Level 2 accept (L2a) trigger, is decided by the past 
future protection condition. The purpose of this is to make sure that pile-ups 
corrupting the data are avoided within a programmable time interval before and after 
the collision. Under normal running conditions, this time is decided by the drift time 
of the TPC detector, i.e. it is issued 88 μs after the time of interaction. The L2a trigger 
is distributed to the sub-detectors as messages containing information identifying the 
event. The event identification consists of two parts: the Bunchcrossing ID and the 
Orbit ID. In the LHC, there are at all times 3563 bunches orbiting in each ring. The 
Bunchcrossing ID is the number of the bunch that is involved in the collision; while 
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the Orbit ID gives the number of times all bunches have rotated since the start of the 
run. Some of these bunches are empty. For p-p it is foreseen that 2808 bunches are 
filled with protons, while of Pb-Pb only 608 bunches have lead nuclei in them[11]. 
As a consequence the collision rate is far higher for p-p runs than for Pb-Pb runs.  

The CTP distributes the triggers to the sub-detectors using Local Trigger Units 
(LTUs). There is one LTU per sub-detector. The LTU forwards the trigger signals to 
the Fee of each sub-detector, but can also be used in stand alone mode for debugging 
purposes. In this case software on the LTU is emulating the CTP behaviour. Figure 
1-6 shows a sketch of the Fee for the PHOS detector that exemplifies the trigger 
distribution to the sub-detectors. The same logical overview is valid for TPC except 
for the part that involves the trigger generation. PHOS contributes to one of the 
trigger sources for L0 triggers and to three (high pt, mid pt and low pt) of the trigger 
sources for L1a triggers. More details on the data received by the Fee via the Trigger 
System are discussed in section 5.2.3. 

An important feedback for the TTC system from the Fee is the busy signal. The busy 
signal is received by the LTU for the given sub-detector. The LTU forwards it to the 
CTP that masks any incoming triggers from being distributed to the Fee. This is 
needed if the buffers on the Fee are full and no more data can be accepted. For TPC, 
PHOS, FMD and EMCal this is solved by using an additional device: the BusyBox. 
The BusyBox sits outside of the radiation environment and asserts the busy signal 
based on information from the LTU and the DAQ system. A short overview over the 
BusyBox is given in section 2.4.5.  

The CTP synchronizes all triggers received from the trigger detectors with the LHC 
clock[11]. The LHC clock has a frequency of 40.08 MHz. It is generated from the 
frequency of the orbiting bunches in the LHC, and distributed as the global clock for 
all the experiments using the LHC. For ALICE, this clock is distributed by the TTC 
system together with the triggers and the trigger messages.  

1.6.3 Data Acquisition System 

The ALICE DAQ system is in charge of moving the data from the detector up to the 
central data storage of ALICE, concentrate the data and do the eventbuilding [3, 9]. 
An overview of the ALICE DAQ architecture including TTC and HLT is illustrated 
in Figure 1-7. This figure exemplifies the architecture for different sub-detector 
setups. Event fragments from the participating sub-detectors are injected on the 
Detector Data Links (DDLs) when an L2a trigger has arrived, and all different sub-
detectors use the same standard protocol for data transmission. The DDL consists of 
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three parts. 1) The Source Interface Unit (SIU) which sits on the detector Fee, 2) the 
Destination Interface Unit (DIU) that is connected to the Data Readout Received 
Card (D-RORC), and 3) a duplex multi mode optical fiber which connects the SIU 
and the DIU. The data is collected by a D-RORC on the Local Data Concentrator 
(LDC). The role of the LDC is to ship the event fragments to a farm of PCs called 
Global Data Concentrators (GDCs), where complete events are built before being 
sent disc storage. The Event Destination Manager (EDM) tells the LDCs which GDC 
computer is available for event reconstruction. The software performing the data 
acquisition in the ALICE DAQ system is DATE (Data Acquisition and Test 
Environment). DATE collects the data from the DDLs connected to all detectors. The 
DAQ system includes a configurable list of which nodes that is expected to be 
participating in the run. This is the DAQ equipment list. If one of the nodes included 
in the list does not deliver any event fragments within a given timeout period, the 
ongoing run is aborted by the DAQ system.  

 
Figure 1-7: The overall architecture of the Data Acquisition System, also 
including the interface to the High Level Trigger. From [3] (edited). 

Several triggers are so frequent that the limiting factor is the performance of the DAQ 
system. Because of this the main task of the TTC system, the DAQ system and HLT 
is to select interesting physics events. In Figure 1-7 several ways of dealing with this 
is shown, of which one is the HLT reducing the amount of data stored to disk 
significantly. The HLT is briefly discussed in the next section. The busy signal is 
used to mask triggers in case the buffers on the Fee are full. For some sub-detectors 
the busy are set by the Fee itself, while for TPC, PHOS, EMCal and FMD, the busy is 
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set by an external device. Another way of masking triggers is done by the DAQ itself. 
The DAQ sets a flag to the TTC system if only events defined as rare should issue a 
trigger. By setting this flag when the temporary storage systems of the DAQ are in 
danger of being saturated it is ensured that the potentially most interesting events are 
kept for analysis. 

1.6.4 High Level Trigger 

The purpose of the HLT [3, 9] is to reduce the overall data rate to fit the constraints 
given by the DAQ archiving rate that is 1 GB/s. This is achieved by event selection 
(trigger on event), selection of Region of Interest (RoI) and data compression. The 
HLT cluster is a PC farm with several hundred nodes for fast online data analysis. 
The events are filtered so that only events considered interesting are stored to disc for 
more detailed analysis. A copy of the raw data from the DAQ are forwarded through 
the D-RORC on the LDC to the HLT Readout Receiver Card (H-RORC) that sits on 
the Front-end Processor (FEP), see Figure 1-7. The FEP forwards the data to the HLT 
cluster. The output of the HLT is streamed back to the DAQ for permanent storage, 
containing region of interest information, trigger information, event summary data 
and the compressed event data itself. 

1.6.5 Detector Control System 

PVSS II

FED client

Wiener

Bus system

PVSS II

OPC client

PVSS II

OPC client

OPC server

ELMB

Bus system

OPC server

InterCom
Layer

Fee client

FED server

Low Voltage DCS Cooling DCS Fee DCS

Configuration
Database

Fee Server

Control Enginge

FED API (DIM protocol)

Fee API (DIM protocol)

Supervisory
Layer

Control
Layer

Field
Layer

Low Voltage
Supplies

Temperature
Monitoring
Devices

DCS archive
Database

 
Figure 1-8: The three-layered logical architecture of the DCS exemplified 
with DCS for low voltage, cooling and Fee. 

The primary task of the ALICE Detector Control System (DCS) [3, 9] is to make sure 
that the operation of the ALICE experiment is done safely in a correct manner. As all 
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experimental equipment can be operated/controlled remotely via the DCS, the 
complete ALICE experiment can be operated from a single location: the ALICE 
Control Room. The DCS is concerned with all parts of the detector from gas, cooling, 
ventilation, access control, and most importantly in the context of this work; the Fee. 
The DCS is a heterogeneous system where the tasks are distributed over many PCs 
and embedded computing devices. This ensures a scalable design, and allows 
independent operation of all the different parts involved.  

The DCS forms a three layered structure both physically and logically. This is shown 
in Figure 1-8 for the operation of low voltage, monitoring of temperatures and the 
Fee. The Supervisory Layer is the top level with the operator’s user interface, 
implemented in a commercial Supervisory Control and Data Acquisition system: 
ProzessVisualisierungs- und Steuerungs-System (PVSS). Examples of such interfaces 
for the Fee DCS are given in Figure 3-10 and Figure 4-11. The Control Layer is a 
communication layer consisting of several PCs, and the Field Layer is where the 
different devices are found. All the nodes in the system work in parallel, feeding the 
operator with useful information concerning the status of the system, or responding to 
commands given at the top level.  

The Fee DCS is responsible for configuring, monitoring and controlling the Fee of 
sub-detector systems, and it is important to notice that the control system is detached 
from the data flow. The control system is designed to automatically act upon different 
conditions that may occur in the equipment. The configuration task includes 
uploading configuration data to the Field Devices. This data is stored in the 
Configuration Database and includes physical location of the equipment, hardware 
addresses and different operational modes. This information covers both hardware 
and software. The DCS archive database is used for storing the monitored values.  
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Chapter 2  
 
 
TPC and PHOS Front-end Electronics 

As TPC and PHOS Fee have a common design and share most of the components, 
the description of the two systems is combined in this chapter. In the introduction the 
Fee are put in context with the DAQ system, the DCS and the TTC system. Then the 
topology of the PHOS Fee and TPC Fee is discussed, before the different components 
of the Front-end electronics are presented. 

2.1 Introduction 

The Fee of the ALICE TPC and PHOS detector consist of all the hardware 
components that are involved in the readout of the data and system monitoring and 
control. The Fee have to comply with strict requirements defined in [4] for TPC. The 
original requirements for PHOS are described in [5], but the Fee for PHOS have later 
been redefined and now the architecture and many of the components are the same 
for TPC and PHOS. Originally, the concept of the Fee was designed for TPC but 
because of the flexibility of the system it was adopted by other ALICE sub-detectors 
of which PHOS is one. Related to the readout and the control systems the following 
requirements must be fulfilled: 

• As the Fee are sited close to the collision point, especially for TPC, the 
radiation tolerance is of vital importance. A major concern is that the 
electronics are operating in an environment that in itself is a source of errors. 
This radiation environment is described in section 1.5.  

• The electronics are physically unavailable when the system is operative. This 
implies that remote operation of the Fee should be possible, and that vital 
components should be remotely upgradable. It also means that it is mandatory 
that the devices that cannot be upgraded are reliable and stable. 

• The TPC event rate of central Pb-Pb and p-p events are 200 Hz and 1 kHz 
respectively. The TPC will at these rates produce about 140 GB/s and 710 
GB/s of data each[12]. Per Readout Node this is about 650 MB/s and 3.28 
GB/s produced data. The data throughput per Readout Node for PHOS is 
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slightly lower. As the bandwidth of the DDL is 200 MB/s, this implies that 
intelligent data compression and readout schemes must be implemented. 

 
Figure 2-1: The TPC Fee. Top: Front End Cards from the same partition 
are connected by means of a custom backplane. Bottom: The RCU 
interfaces the partition with the Data Acquisition, Detector Control and 
Trigger Systems. From [13]. 

A schematic overview of the Fee for TPC in context with the online systems in 
ALICE is given in Figure 2-1. For both PHOS and TPC the Fee consist of a set of 
Front End Cards (FECs) that receive analogue data from the detector sensors. The 
FEC amplifies and shapes the analogue signal, performs analogue to digital 
conversion and digital filtering of the data. As shown in the topmost part in Figure 
2-1 up to 25 FECs can be connected to one Readout Control Unit (RCU) via two 
separate branches for the TPC, while for PHOS there are always 28 FECs per RCU. 
As PHOS is also a trigger detector, there is additionally a Trigger Region Unit (TRU) 
board on each branch. The TRU is discussed in section 2.4.4. The bottom part of 
Figure 2-1 shows the RCU connected to the FECs via the backplanes. The RCU 
consist of the RCU Motherboard, the DCS board and the SIU. The DCS board acts as 
a node in the Field Layer of the DCS and connects to the higher hierarchical levels of 
DCS via a standard Ethernet connection. The DCS board is also the receiver of the 
master clock and triggers via an optical link to the TTC system. The SIU connects to 
the DAQ system and pushes the data out on the DDL. All these components are 
discussed in more details in the subsequent sections. 
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There are 216 RCUs in the TPC, reading out a total number of 570132 channels 
connected to equally many detector pads. In the final state of the PHOS detector with 
all five modules installed, there will be 20 RCUs that altogether serve 35840 channels 
connected to 17920 crystals (There is one high gain and one low gain channel per 
crystal).  

2.2 TPC Fee Topology 

 
Figure 2-2: Each TPC sector is divided into 6 readout partitions with 18, 20 
or 25 Front End Cards. Each readout partition is configured and readout 
using one RCU connected via two independent branches. From [13] 

The TPC detector is divided into 36 sectors, 18 on each of the endplates of the TPC 
barrel. These sectors are divided into 2 readout chambers, the inner readout chamber 
and the outer readout chamber. There are 2 readout partitions in the inner chamber 
and 4 readout partitions in the outer chamber. One readout partition is read out by one 
RCU. As seen in Figure 2-2 there is an unequal number of FECs on the different 
partitions. In the area of the TPC covered by the inner readout chamber the 
occupancy is higher, and therefore the readout pads are smaller to provide a better 
spatial resolution. This implies that the number of channels in this region is higher, 
and more FECs are needed. 
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2.3 PHOS Fee Topology 

 
Figure 2-3: Each PHOS module is divided into 4 readout partitions in 
context of data readout. When in context of PHOS as a trigger detector, 
one branch is regarded as a trigger region and is served by one TRU. 

The PHOS detector consists of 5 modules. Each PHOS module (Figure 2-3) is 
divided into 4 readout partitions that are served by 1 RCU each. One readout partition 
is mapped to a matrix of 32 x 28 crystals, reading out two channels per crystal 
divided into high gain and low gain. As for the TPC one branch consists of two PCB 
backplanes, one for data and one for control signals, and 14 FECs are connected per 
branch. Additionally for PHOS a ~40 cm flat ribbon cable extension connects the 
PCB backplanes to the RCU. The TRU on each branch defines this area to be a 
trigger region, connecting to all the FECs on the given branch. The TRU connects to 
the RCU using the same PCB backplane as the FECs.  



35 

2.4 Front End Electronics Devices 

2.4.1 TPC Front End Card 

The TPC FEC (Figure 2-4) connects to the detector pads and processes the signals 
generated by the charges deposited on the pads. One pad maps to one readout 
channel. There are two important devices involved in the signal processing: the 
PreAmplifier ShAper (PASA) and the ALICE TPC Readout Chip (ALTRO) chip. On 
the FEC there are 8 PASAs and 8 ALTROs supporting altogether 128 channels per 
board.  

 
Figure 2-4: Top view of the TPC FEC. From [13] 

Figure 2-5 shows the signal processing path of each channel in the TPC Fee. The 
charge collected on the TPC pads is amplified and integrated by the PASA chip. It 
produces a pulse with a rise time of 150 ns and a shaping time of 190 ns. The pulse is 
then sampled by a 10 bit Analogue to Digital Converter (ADC) at a configurable rate 
of 2.5 MHz to 10 MHz. The digitized signal is processed by digital filters that allow 
for baseline restoration, pedestal subtraction, zero suppression and tail cancellation, 
before being buffered in a memory. The ADC and the digital processing logic are 
contained in the ALTRO [14]. The digital processing is configurable from the RCU.  
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Figure 2-5: Block diagram showing the signal path in the TPC Fee. From 
[3]. 

The controlling functionality on the FEC is maintained by the Board Controller, 
marked BC in Figure 2-4. The main task of the TPC Board Controller is to monitor 
the health of the FEC by reading voltage levels, currents and temperatures. The Board 
Controller is discussed in section 3.6. 

2.4.2 PHOS Front End Card 

As seen by Figure 2-6, the PHOS FEC includes many of the same components as the 
TPC FEC. The PHOS FEC contains 4 ALTROs serving 32 inputs from the charge 
sensitive amplifiers (CSPs) that are split into high gain and low gain signals using 
altogether 64 ALTRO channels. The digital part from the ALTRO and to the 
backplane connectors is identical to the TPC FEC, but the PHOS FEC implements 
two additional features: 1) High Voltage Bias Controllers that sets the bias voltage to 
the APDs, and 2) the Fast-OR output to the TRU. This is a special fast shaper that 
sums 4 inputs into a Fast-OR output signal. With the 32 input channels, this gives 8 
analogue sums per FEC that are made available on the output connector. The signal 
path of PHOS is shown in Figure 2-7. Except for the trigger generation part, it is 
similar to the signal path of the TPC FEC.  

The Board Controller controls the board; monitoring voltage levels, currents and 
temperatures made available by 3 ADCs placed on different locations on the board. 
The Board Controller is also in charge of controlling the Digital to Analog Converters 
(DACs) that set the High Voltage Biases. 
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Figure 2-6: Top View of the PHOS FEC. 

 
Figure 2-7: Block diagram showing the signal path of PHOS, including the 
trigger generation part.  
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2.4.3 Readout Control Unit 

 

 
Figure 2-8: Top: The RCU top view including DCS board and SIU card. The 
RCU motherboard is in the back with the SIU card (top) and the DCS board 
(bottom) attached. Bottom: The RCU bottom view where the FPGAs and 
the connectors to the PCB backplane are located.   

A picture of the RCU is shown in Figure 2-8. In the topmost part the three boards 
comprising the RCU are marked. The SIU [9] is on the top with the optical connector 
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to the DDL and the DAQ system. The DCS board is in the bottom with the optical 
link to the TTC system, and the Ethernet connection to the DCS. In the back is the 
RCU Motherboard. 

 
Figure 2-9: The architecture of the Fee for one readout partition in TPC. 
From [13]. 

The tasks of the RCU are twofold. 1) It moves the data from the FECs to the DDL, 
and 2) it controls the Fee sub-system consisting of the RCU with the belonging FECs. 
This is illustrated in Figure 2-9 for one TPC readout partition, but it is equally valid 
for a readout partition in PHOS.  

To control the data readout, the RCU distributes two clocks to the FECs, the readout 
clock and the sampling clock. The readout clock is essentially the LHC clock 
forwarded via the RCU main FPGA to the FECs, while the sampling clock is 
generated in the RCU based on the LHC clock, and has a configurable frequency of 
2.5 MHz – 10 MHz. The sampling clock is used by the ADCs in the ALTROs to 
sample the analogue data on the input.  

 Readout Control Unit Motherboard 
The RCU Motherboard hosts the FPGA that implements the readout and control 
functionality on the RCU (Figure 2-8, bottom). The RCU main FPGA is a Xilinx 
Virtex-II Pro XC2VP7[15, 16], and it has interfaces to the Gunning Transfer Logic 
(GTL) drivers that connect to the PCB backplanes, to the DCS board, and to the SIU 
card. As seen in Figure 2-9, the RCU main FPGA is a vital part of the data-path, and 
it is in charge of the basic controlling functionality of the Fee. 

In addition to the RCU main FPGA, the RCU hosts one additional Flash based 
FPGA[17] and an 8 MB Flash Memory Device[18] that together implement the RCU 
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Reconfiguration Network. The configuration files for the RCU main FPGA are stored 
on the Flash Memory Device and the task of the RCU support FPGA is to configure 
the RCU main FPGA using these configuration files. This solution is extensively 
discussed in Chapter 4.  

 Detector Control System Board 
The DCS board6 was originally designed for TRD, but because of the flexibility of 
the board it has been used for several other sub-detectors in ALICE. For TPC and 
PHOS the DCS board is in use on the RCU (Figure 2-8), but is additionally utilized 
on several other smaller systems: the BusyBox, the PHOS Trigger-OR, the PHOS led 
calibration system, and various small controlling systems for TPC (Gating grid, Laser 
etc.). As seen in Figure 2-8, the DCS board interfaces the higher levels via a 10Mbit/s 
Ethernet connection. The DCS board is also equipped with an SRAM device, a Flash 
Memory Device acting as a hard drive, and an Altera Excalibur FPGA with an 
embedded ARM processor core[19]. These components turn the DCS board into an 
embedded computer, on which a small tailor made version of Linux is installed. All 
ALICE sub-detectors that use the RCU as the readout controller use the same system 
setup of the DCS board. This is based on the TRD version[20], and all the 
software/firmware that the sub-detectors have in common is inherited from TRD, 
including the Linux operative system. The Linux is the main cause of the flexibility 
of the DCS board, making updates and maintenance straightforward to do.  

An additional component not highlighted in Figure 2-8 is the small Lattice Complex 
Programmable Logic Device [21] (CPLD) that is in charge of the clock distribution 
and voltage regulator enabling. This makes it possible to power down the underlying 
Motherboard and change the clock frequency of the system clock. This component is 
not actively interfaced together with the RCU Motherboard since the RCU 
Motherboard is considered to always be powered on7, and the clock frequency of the 
RCU Motherboard is fixed to the LHC clock frequency.  

The Altera Excalibur FPGA is extensively described in [19]. The FPGA consists of 
two different parts. One part contains predefined modules like the processor core, 
                                              
6 The DCS board is designed and built at the Kirchhoff-institute for Physics, University of Heidelberg. http://www.kip.uni-
heidelberg.de/ti/DCS-board/current/  
7 The actual reason for this is a hardware bug on the RCU Motherboard. The DCS board power-on-reset is connected 
without a diode to the FPGAs and a pull-up on the RCU motherboard. If the DCS board disables the RCU Motherboard 
voltage regulators, the pull-up will be changed to a pull-down which is strong enough to issue a reset. As a result, the DCS 
board will be rebooted immadiately if the RCU Motherboard is powered down.  
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interrupt controller, various interfaces etc. The other part is the Programmable Logic 
Device (PLD), where the entire user defined logic is implemented. A schematic 
overview of the different components and how they are connected are found in 
Figure 2-10. The Excalibur device contains an ARM 922T embedded processor core 
that communicates to other modules using an AHB bus protocol. The internal 
communication is divided into two separate bus systems to ensure that the processor 
activity is unaffected by peripheral and memory activity. The AHB1-2 Bridge 
handles all transactions from the processor core to the PLD or slaves connected to the 
AHB2.  

 
Figure 2-10: Schematic overview of the Altera Excalibur FPGA used on the 
DCS board. From[19].  

Some of the key modules for the DCS board in Figure 2-10 are: 

• Dual Port/Single Port SRAM: Important in several modules, like for instance 
the RCU Communication Module (section 3.4) and the Ethernet Module. 

• Expansion Bus Interface (EBI) is used to communicate with the external Flash 
Memory Device. 
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• Universal Asynchronous Receiver/Transmitter (UART): This is very handy for 
debugging and testing as it provides a possibility to have the Linux command 
line available via the serial port of a connected PC. 

• Interrupt Controller: Handles all the interrupts, also the ones coming from the 
PLD part. One of these interrupts is for instance fired when a FEC has been 
switched off due to an error situation handled by the RCU. 

• Watchdog Timer: Resets the whole system, thus providing protection against 
software failures. On the DCS board it can be used to trigger a reboot of the 
board based on for instance radiation related errors as the reset of the 
Watchdog is controlled from software. 

• PLD to Stripe/Stripe to PLD Bridge: These two bridges do the communication 
between the user logic in the PLD and the processor core.  

2.4.4 PHOS Trigger Generation Hardware 

 Overview 

 
Figure 2-11: Sketch emphasizing one trigger region of PHOS to show the 
data flow of the trigger detector functionality. 

As the PHOS detector is fast enough to be used for L0 and L1a trigger decisions in 
ALICE. Each FEC in a trigger region submits analogue sums of the input signals to 
the TRU. These analogue sums are digitized and then processed by the FPGA on the 
TRU into L0 and L1a triggers. The Trigger-OR board combines triggers from all 
TRUs, and forwards them to the CTP. See Figure 2-11. The timing requirement for 
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generating the L0 trigger implies that PHOS must deliver the L0 trigger to the CTP 
800 ns after the time of interaction. This includes the extra delay of 200 ns introduced 
by the cable length of 40 meters from the Trigger-OR to the CTP. The L0 and the 
L1a trigger is based on 8 analogue sums per FEC, performed on the FEC by fast 
summing shapers over a 2x2 crystal matrix, before being fed to the TRU.  

 Trigger Router Unit (TRU) 
The present version of the TRU contains a Xilinx Virtex-II Pro FPGA. 14 ADCs 
digitize the 112 analogue input signals received from the FECs, before entering the 
FPGA. The triggers are generated in the FPGA by summing up 2x2 analogue sums 
giving a total area of 4x4 crystals in space, and additionally summing up the analogue 
input signals in time over a time span of 100 ns. The L0 trigger is issued if the 
deposited energy given by the space time sum exceeds a programmable threshold 
between 10 and 230 MeV[22]. Three L1a triggers can be issued if there has been a 
valid L0 decision. These are based on three different programmable thresholds 
between 0.5 and 30 GeV. The thresholds are set to separate the events into high pt, 
mid pt and low pt events, based on the value of transverse momentum of the photon. 
The TRU is presented in [22] and the firmware solution is discussed in depth in[23].  

 Trigger-OR 
The purpose of the Trigger-OR board is to collect all the L0 and L1a triggers from 
the 40 TRUs in the PHOS detector. The L0 triggers are ORed through a fast OR gate. 
The same approach is currently used for the different L1a triggers as well. 

The present concept of the TRU analyzing the data, while the Trigger-OR only 
forwards the triggers to the CTP might be changed in the future. Instead of sending 
triggers from the TRU, the raw data will be shipped, leaving the data analysis to the 
Trigger-OR. This opens the possibility to treat the PHOS detector as a whole, not 
being limited by the boundaries of a trigger region.  

2.4.5 BusyBox 

One important task of the readout system is to block the CTP from sending triggers if 
the buffers on the Fee are full and no more triggers can be handled. For all sub-
detectors using the RCU (TPC, PHOS, FMD and EMCal), the busy is generated by 
the BusyBox. The BusyBox is shown in Figure 2-12 and is a dedicated board that 
hosts two Xilinx Virtex-4 FPGAs and a DCS board. The sub-detector is considered 
busy 1) when the buffers on the FEC are full; 2) a trigger sequence is being received 
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from the TTC, or 3) when the TTC system sends a global reset to the Fee. To assert 
the busy line, the BusyBox needs to know what triggers are issued and how many 
multi event buffers are occupied in the Fee. The CTP will not send any triggers as 
long as the busy signal is asserted by one of the sub-detectors.  

 
Figure 2-12: Picture of the BusyBox with open cover to display the 
components. The important components are labeled. 

The trigger information is acquired by the Fee trigger reception logic (see section 5.2) 
communicating with the LTU via the TTC receiver chip (TTCrx) on the DCS board. 
This implies that the same logic is used to decode the trigger sequences as is used in 
the RCU. For information regarding the status of the buffers, communicating directly 
with the Fee would be inconvenient because it is located inside the detector in the 
radiation environment. The solution is to communicate with the D-RORCs which 
during a data readout operation receive the event-fragments from the Fee. For TPC 
there are 216 D-RORCs that are connected to the BusyBox via twisted pair LVDS 
cables. To be able to serve that many connections, add-on boards are needed for the 
BusyBox that are connected to the BusyBox board via flat cables. These are the 
connectors as seen in Figure 2-12. FPGA #1 will serve up to 120 LVDS pairs, while 
FPGA#2 serves the remaining 96. This also implies that for PHOS, a smaller 
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BusyBox with only one FPGA has been designed, that serves the 20 PHOS D-
RORCs. The busy output is forwarded by the LTU to the CTP, which masks all 
possible trigger situations until the busy is released. 
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Chapter 3  
 
 
Detector Control System for the Fee 

In this chapter the Detector Control System for the Front-end electronics is 
described, focusing only on the field layer devices. The DCS is described top down, 
from the software on the DCS board, via the RCU and down to the Board Controller 
on the FECs. The work of this thesis is mostly concerned with DCS board firmware 
and PHOS Board Controller, and these two projects will be given more attention 
than the other modules of the Fee DCS. Several other motherboards also host the 
DCS board (for instance BusyBox and PHOS Trigger-OR), and the adaptation done 
to the DCS board firmware for these boards is discussed. The reconfiguration logic 
of the RCU Motherboard – which is a vital part of the Fee control system – is given 
special attention in a separate chapter  

3.1 Introduction 

Whereas the general DCS architecture is discussed in section 1.6.5, this chapter will 
only focus on the DCS for the Front-end electronics; more precisely the Field Layer 
devices. Figure 3-1 shows a schematic of the Fee DCS Field Layer. The Front-end 
electronics Server (FeeServer) software running on the DCS board interfaces the 
higher levels, and custom made Linux device drivers communicate with the RCU. In 
the context of the control system, the RCU main FPGA device handles the 
monitoring and configuration of the FECs. The FECs both in TPC and PHOS host an 
SRAM based FPGA: the Board Controller. The Board Controller reads the 
temperature, voltages and currents from ADCs on the FECs and makes them 
available in memory. The monitored values on the FECs are read by the DCS using 
the Front-end Control (FC) Bus, where the RCU acts as an abstraction layer. These 
values are published to the higher levels by the FeeServer, and are displayed to the 
operator at a PVSS display in the ALICE control room.  

If any measured value is violating a predefined threshold, it is of vital importance that 
the Fee DCS acts immediately. This implies that already at the firmware level, an 
automatic procedure must be applied to deal with such a situation or else it might lead 
to permanent damage of the FECs. It is also crucial that all actions taken at the lower 
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levels are reported to the operator at the top. This includes interpreting and 
combining the status and error registers in the various firmware modules in an 
overviewable way for the operator.  

 
Figure 3-1: Sketch showing the Field Layer devices for the TPC/PHOS Fee. 

Another important issue in the context of the Fee DCS is the handling of radiation 
related errors. As the Fee are operating in a radiation environment, single event 
upsets (SEUs) can and will happen in the SRAM based FPGAs that are used 
throughout the system. The consequence for the RCU can be that the data flow will 
be interrupted, while an expected consequence for the DCS board is that the Ethernet 
communication to the higher levels is lost. The problem is partly handled at the RCU 
Motherboard by the RCU support FPGA that controls the configuration memory of 
the RCU main FPGA. This supervisory system is recognized as the Reconfiguration 
Network in Figure 2-8. It is a very important component of the DCS, and this topic 
will be specially covered in Chapter 4. For the DCS board no such solution exists, 
therefore it is vital that the DCS board has a possibility to discover that it is failing 
and reboot itself. Rebooting the DCS board will reconfigure the firmware on the 
FPGA, escaping from any SEU induced error situations. This also has its side effects. 
It implies that the DCS board will be offline for the time it takes to reboot, and 
erasing the contents in the FPGA makes the signals between DCS and RCU float. It 



49 

is very important that the status of the DCS board does not inflict on the operation of 
the RCU, or any other Motherboard that hosts the DCS board.  

3.2 DCS Board Software 

3.2.1 Communication Software on the DCS board 

Each DCS board implements a FeeServer which the higher layer subscribes to as a 
client using DIM (Distributed Information Management) communication 
framework8. The core of the FeeServer is device independent. It provides general 
communication functionality, remote control and update of the whole FeeServer 
application. The core can be used for different devices, i.e. different detectors of the 
ALICE experiment. The device dependent actions are adapted for each specific 
device and are executed in separated threads. This makes a controlled execution 
possible. 

The Control Engine implements the device dependent functionality of the FeeServer, 
which includes methods for initializing and cleaning up the device, as well as 
command execution and device data access. As the DCS board runs a Linux 
operating system, the access to the specific hardware is done via Linux device 
drivers. The use of device drivers to communicate with different parts of the 
hardware introduces an abstraction layer which decouples software from hardware. 
Updated firmware modules and device drivers with new functionality can at any time 
be inserted into the system. This establishes a system that is easy to maintain and can 
with little effort be modified to meet future demands, despite if the whole detector 
system is physical unavailable after project startup. 

The Control Engine, FeeServer and the DCS architecture in general is extensively 
discussed in [24]. The DCS board including the Linux operative system is explained 
in [20]. 

                                              
8 http://www.cern.ch/dim 
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3.2.2 The DCS Board Logical Architecture 

 DCS board Flash Memory Device Architecture 
The 8 MB Flash Memory Device[18] that acts as a hard drive on the DCS board is 
divided into 4 memory banks where different key content is located: 

• Armboot – Bootloader and Firmware 

• Bootenv – The boot environment where for instance the board’s MAC address 
is stored. 

• Kernel – The ArmLinux Kernel. 

• DCSrootfs – The root file system of the DCS board.  

For the TPC/PHOS version of the DCS board, the Bootenv and Kernel are inherited 
directly from the TRD version with no changes applied. The Armboot part is 
naturally updated because of the needed firmware changes, and this is also true for 
the software part located on the DCSrootfs. 

 The Root Filesystem 
The root file system is formatted in the JFFS2 (Journaling Flash File System 2) type. 
JFFS2 is writable, fail safe against power loss, compresses data, takes care of wear 
leveling9 and is often chosen for embedded systems.  

The regular programs and commands for operating and administrating the UNIX 
system are provided by BusyBox10. In addition to them are some programs from 
other sources, or written by the developers for the detector specific hardware on the 
board. 

There are always two sides to every story which is also true for the level of 
sophistication that the Linux system provides. It implies that a lot of advanced 
software is present on a low system level, which again means that there is a higher 
risk of finding critical software bugs than with a simpler system. The positive side of 

                                              
9“Wear leveling is a technique for prolonging the service life of some kinds of erasable computer storage media, such as 
flash memory”, citation from www.wikipedia.org. 

http://www.busybox.net/10  
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this is that it is possible at any time to remotely correct any bugs found while the 
experiment is ongoing. 

3.3 DCS board Firmware 

3.3.1 Overview and Specification 

 
Figure 3-2: System sketch of the DCS board firmware for TPC/PHOS.  

As the DCS board was originally developed to be used for the TRD detector [20], the 
features that are common between the two projects are inherited from the TRD 
development. This is in practice the following interfaces:  

• The Ethernet Device interface  

• The TTCrx I2C control interface 

• The interface to the Lattice CPLD for clock distribution and Voltage Regulator 
controller functionality. 

• The I2C interface to the ADC for monitoring purposes. 
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• Neighbor Board Control. This is a special JTAG interface that enables a DCS 
board to communicate with its neighboring DCS boards for increased 
robustness. This feature was decided not to be used for TPC and PHOS, but 
the interface has not been removed in case it is found useful in the future.  

All of these interfaces are important for the functionality of the DCS board, but are 
not discussed any further in this text. More information on this can be found in [20]. 
The only TPC/PHOS specific add-on done to the firmware of the DCS board is the 
communication towards the Motherboard that hosts the DCS board. 

The communication to the registers in both FPGAs on the RCU Motherboard as well 
as a few internal registers on the DCS board is done with the RCU Communication 
Module (See Figure 3-2). The RCU Communication Module needs to be able to 
fulfill the following requirements: 

• It must support a variety of Motherboards that host the DCS board. 

• Together with the RCU support FPGA (Chapter 4) it must control the RCU 
Flash Memory Device, the RCU main FPGAs configuration interface as well 
as normal register access.  

• It must not become the bottleneck of the system, especially while transferring 
large amount of data during configuration.  

The RCU Communication Module and the other modules in the DCS board firmware 
have a designated address space of the ARM CPU, giving the Linux system access to 
available registers and memories by the use of device drivers (Table D-2). 

3.3.2 DCS board Flavours 

In addition to the RCU, the DCS board is used on several other motherboards. 
Special firmware versions that are based on the RCU version are designed for the 
PHOS Trigger-OR board and the BusyBox. In both of these cases the increased 
configurability and easy access to the firmware modules have been the main reasons 
for choosing this solution.  

The firmware described in this section has originally been designed for the RCU, so 
this will be the focus of the text. The adaptations done for BusyBox and Trigger-OR 
will be described in section 3.4.11.  
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3.4 RCU Communication Module 

3.4.1 Overview 

 
Figure 3-3: Schematic of the RCU Communication Module. The Flash 
interface and the Memory Mapped interface are using the instruction (M1) 
and result (M2) memories. The selectMAP interface is directly controlled by 
the Linux Driver. 

The RCU Communication Module (Figure 3-3) can be viewed as the glue between 
the RCU and the embedded processor. The main modules are: 1) the 
MessageBuffer11, which is a memory mapped interface and by far the biggest part of 
the design, and 2) the direct selectMAP interface. The MessageBuffer part makes use 
of two 32 bit wide memories on the PLD, one memory acts as an Instruction Memory 
(M1), while the other is a Result Memory (M2). In the Instruction Memory, the 

                                              
11 The original TPC/PHOS DCS board firmware was designed at the University of Bergen by Torsten Alt. The then 
existing version of the RCU Motherboard had only one Altera FPGA as the main FPGA, and it was planned to implement a 
JTAG interface on the DCS board to configure this FPGA, but the results from the irradiation tests proved that this FPGA 
was not suited and the present solution was developed. 
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kernel device driver writes predefined blocks of data/instruction that on execution 
return status and data in the Result Memory. This increases the robustness of the 
communication protocol by adding an abstraction layer between software and the low 
level register interface. The direct selectMAP interface is not making use of any 
memories, but is directly controlled from a Linux device driver. The direct 
selectMAP mode must be actively enabled by software prior to being accessed. 

The RCU Communication Module is controlled by the Command Status (ComStat) 
Register (Table D-3). Transactions are initiated by writing to this memory location, 
and a busy status can be read when the given command is being executed. Two bits 
are considered as asynchronous resets on two levels. One is for the DCS board 
firmware and the underlying Motherboard, while the other is for the DCS board 
firmware only. It is also possible to disable all outputs that are routed to the DCS-
RCU connector to avoid stray currents in case the underlying board is powered down. 
The modes of operation as described in next section are also set by two bits in the 
ComStat register. 

3.4.2 Modes of Operation 

Historically the RCU Communication Module only consisted of the MessageBuffer 
(minus the Flash interface), but as the Reconfiguration Network on the RCU 
Motherboard was designed, two new ways of using the control and data lines were 
introduced. In addition to the normal communication path the RCU Flash interface 
and the selectMAP interface to the RCU main FPGA were added. There are several 
reasons for having these two interfaces on the DCS board. 

• Speed. Using the default normal operation mode to communicate with the 
Flash Memory Device or the selectMAP interface is not very efficient as it will 
add another – and not useful – layer of abstraction in the communication 
chain. Simply moving the Flash interface and the selectMAP interface to the 
DCS board, using the RCU support FPGA as a route through firmware is more 
efficient. 

• Space. The RCU support FPGA has limited capacity, so to be able to fit in all 
the needed functionality, the modules that are not needed in the RCU support 
FPGA are moved. 
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• Robustness. The RCU support FPGA is difficult to update after installation12, 
so correcting potential bugs are difficult. Moving firmware modules to the 
DCS board ensures that communication paths to the selectMAP interface and 
the Flash Memory Device will always be available.  

The RCU Communication Module supports three communication modes: normal 
operation mode, direct selectMAP mode and Flash mode as shown in Figure 3-4. The 
normal operation mode is used to communicate with the registers in the firmware of 
the FPGAs on the RCU Motherboard, as well as the internal registers in the DCS 
firmware. The direct selectMAP mode is for communicating with the configuration 
interface of the Xilinx Virtex-II Pro. The purpose of the Flash mode is to 
communicate with the Flash Memory Device of the RCU. The two latter modes use 
the RCU support FPGA as a tunnel to the different interfaces.  

RCU Flash
Memory
Device

DCS board

RCU board

RCU Xilinx-II
vp 7 Selectmap
Bus Interface

Altera FPGA incl.
ARM core

RCU Actel
APA075

Linux incl. drivers
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Figure 3-4: Sketch showing a logical view of the three modes of operation: 
From left to right: Flash mode, selectMAP mode and normal operation 
mode.  

The RCU support FPGA has a full selectMAP interface of its own, so in the case of 
the RCU the selectMAP interface on the DCS board is added for redundancy and 
increased configurability. The Trigger-OR and the BusyBox do not have a support 
FPGA, so for these devices it is strictly necessary to include it. The implementation 
of the actual bus protocol is done in software instead of firmware since the speed of 
the interface is not an issue. 

                                              
12 Physical access is needed to update the RCU Support FPGA. This means that the ALICE detector must be dismantled to 
access the JTAG connector on the RCU Motherboard. In other words – such a situation is not desired.  
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3.4.3 Definition of the interconnecting DCS-RCU bus lines 

The three modes of operation imply that the interconnecting bus lines between DCS 
and RCU are defined differently depending on the mode selected. The modes are not 
used on any other motherboard than the RCU. The definition of the bus lines is given 
in Table D-5. There are four lines that are valid in all modes; the interrupt line, the 
reset line, and the 2 lines used for setting the mode. The interrupt line is signaling if a 
critical situation has occurred on one of the FECs; a situation that needs immediate 
attention from the higher level of software. The value of the mode select lines for the 
different modes has been selected so that rebooting of the DCS board will not inflict 
on the operation of the RCU. The modes are defined like13: 

• “11” – normal operation mode 

• “10” – selectMAP mode 

• “01” – Flash mode 

• “00” – Normal operation compatibility mode  

The default mode has been set to “11” since the mode lines have pull ups on them. 
This will ensure that the mode for the RCU does not change when the DCS board 
does not actively drive the lines, for instance during reboot. Support for “00” is added 
for backward compatibility. It is important that the other modes are not selected by 
chance, so they are chosen to be “01” and “10”, since it is unlikely that the mode 
lines should be unequal to each other if not actively driven. 

3.4.4 RCU Interrupt Handling 

One of the control lines between the RCU and the DCS is the interrupt line. This 
interrupt is forwarded directly into one of the available interrupt inputs of the ARM 
core. As there is an external pull up on the interrupt line, the interrupt is active low. 
Handling of the interrupt in software has not yet been integrated in the system, but 
essentially the Linux driver that handles the interrupt should acknowledge this by 
writing to a designated register in the RCU, which will then release the interrupt line. 

                                              
13 These mode settings do not match exactly what is defined in the ComStat register in Table D-3. The reason for this is 
that the modes were set differently in earlier versions of the RCU communication module firmware, and to affect as little as 
possible of existing software, the mode definitions are kept equal in the upper layer, while they are recoded in the RCU 
communication module. 
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What the higher level of software then decides to do when the interrupt is received 
depends on the severity of the error situation, as discussed in depth in [13]. 

3.4.5 MessageBuffer Functional Overview 

The core module of the MessageBuffer is the RCU Configuration Controller. This 
finite state machine decodes the data in the Instruction Memory. Upon execution of 
the sequence, data and commands are sent to the RCU Master interface or the RCU 
Flash interface.  

To make use of the whole width of the Instruction Memory, a possibility to compress 
the data from software to the Instruction Memory is added. This means that the 32 
bits that are written to the Instruction Memory can be interpreted by the RCU 
Configuration Controller as 2 x 16 bits, 3 x 10 bits or 4 x 8 bits. The same can be 
done the other way around back to the Result Memory. This option is designed since 
the pedestal memory of the ALTRO is a 1k x 10 bit wide memory block, and writing 
using 3x10 bit compression will write the pedestal data in almost 1/3 of the time 
opposed to doing single transactions per 10 bit word14. 

An RCU Slave Module is included to communicate with internal registers. The 
internal registers are listed in Table D-1. The SM_Enable register is used by the 
BusyBox and Trigger-OR flavour of the DCS board (section 3.4.11) only. The 
set_old_mode is only used by the RCU flavour and is implemented for backward 
compatibility. The remaining registers are used by both. The three flavours of 
firmware can be divided by the firmware version register. RCU flavour is numbered 
2.x; the Trigger-OR flavour 2.x1, while the BusyBox flavour is numbered 2.x2 and 
2.x3, where x is the version number. Even though the RCU Slave is connected prior 
to the Mode Select Module as seen in Figure 3-3, the RCU Communication Module 
still has to be in normal operation mode to be able to communicate with it. 

3.4.6 MessageBuffer Configuration Block 

When communicating either in normal operation mode or in Flash mode, a block of 
data with a predefined format is written to the Instruction Memory. The format is 

                                              
14 This was true for the different sub-versions of RCU fw v1.0. For RCU fw v2.0 this option has been removed, making the 
compress algorithm less useful. 
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given in Table D-6. On command from software these blocks are decoded by the 
RCU Configuration Controller. 

The information given in the header of the data block is used by the MessageBuffer 
to decode the message. The Version id is only in use by the driver and not read by the 
firmware at all. The Control bits are used to set if the following data block is for the 
Flash interface or the RCU master interface, as well as setting the compression of the 
data. The Block Number is the number of the current sequence block. The first block 
has number n-1, the block number is decremented for the following blocks. The last 
block has block number 0. If there is only one sequence block, the block number bits 
are just zero. The Number of Words are the total number of words within one block, 
not including header or end block marker. The Command id gives the command to 
execute. The commands are divided into a single transaction in one block or multiple 
transactions in one block. The great advantage of the latter is that the overhead is 
significantly reduced since only one header and one footer word are needed for a 
large amount of data. Additionally, firmware (instead of software) is responsible for 
controlling the actual transactions. The result of this is that the speed of the 
transactions is significantly increased. As both the Flash mode and normal operation 
mode uses the MessageBuffer, a special set of command for Flash mode is defined. 
All available commands are listed in Table D-8.  

The format for the data block returned in the result memory is given in Table D-7. 
After a transaction has been executed by the RCU Communication Module, the 
software can read this buffer for status information and returned data.  

3.4.7 DCS Bus Protocol 

 
Figure 3-5: DCS bus protocol. First 0xDEADBEEF is written to register 
0x7000, and then it is read back afterward (From simulation). 

The DCS bus is an asynchronous bus with full handshake, of which the DCS board 
acts as bus master. On command from the Configuration Controller, the common 
strobe is driven low and then the bus master waits for the acknowledge from the 
slaves connected. Timeout is reported if no acknowledge has been received within a 
specified time of 32 clks. If a valid acknowledge is received or the transaction has 
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timed out, the master returns to idle. An example of a write and read transaction is 
given in Figure 3-5.  

As the RCU Motherboard and the DCS board are using the same system clock, and 
the wire length between the DCS board FPGA and the RCU FPGAs is only a few 
centimetres, having an asynchronous bus protocol is not mandatory. It is not a very 
fast protocol as it takes at least 6 clks from the strobe is asserted until it is deasserted. 
On the other hand it is a fail safe protocol, and this is the reason why it at some point 
in time was chosen. It has not been evaluated to be changed later on, since changing 
the interface would involve changes of the slaves of all the Motherboard that hosts 
the DCS board. Additionally, software gives a much larger contribution to the actual 
transaction time than what the implementation of the bus protocol does. 

3.4.8 Flash Bus Protocol 

 
Figure 3-6: Write sequence for the RCU Flash interface. The first part is 
writing the sequence of commands; the second part is the status polling. 
The erase sequences are equal to the write sequence except for a different 
command sequence (From simulation). 

The Flash Interface Module is used to interface the RCU Flash Memory Device [18]. 
For the software it seems as if the RCU Flash Memory Device is operated in word 
mode, but because of the restriction in the number of lines going from the DCS board 
to the RCU Motherboard, the Flash Interface Module splits each 16 bit word into two 
bytes that it writes sequentially when writing and vice versa for reading. It has been 
designed like this for consistency as the RCU support FPGA operates the Flash 
Memory Device in word mode. The Flash Interface Module supports the following 
subset of commands as specified in [18]: Read, Write, Erase all, Erase sector, Flash 
reset and Flash Read ID.  

A read operation is simple. It is just to set up the address and then the data are ready 
after approximately 90 ns. A reset is made by asserting the reset line and then wait for 
10 μs. The most complicated operations are writing and erasing (see Figure 3-6). 
These operations demand that a certain sequence of commands is written before 
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starting to continuously poll the Flash Memory Device, waiting for the Flash Memory 
Device to report whether the transaction is successful or not. As the control and data 
signals are routed through the RCU support FPGA on the RCU Motherboard, the 
timing of the Flash communication is more relaxed than what is specified in [18]. 
Additionally, the speed of the Flash bus protocol is not an issue, since updating the 
Flash will only be needed if a new firmware version for the RCU main FPGA is 
released.  

3.4.9 SelectMAP Bus Protocol 

On the DCS board, the selectMAP bus is managed directly from the Linux 
selectMAP device driver. The device driver interfaces dedicated input and output 
data memory addresses, as well as the selectMAP bus control lines (see Table D-4). 
The selectMAP bus protocol is defined by Xilinx. A short overview is given in 4.3.3, 
and more information is found in [16], chapter 4 and [15], module 2 for the Virtex-II 
Pro device. What can be mentioned is that the Virtex-4 and the Virtex-II Pro has a 
minor variation when it comes to the protocol for reading. The Virtex-4 is used on the 
Trigger-OR and the BusyBox. When reading a given register that can be addressed 
by the selectMAP protocol, a header containing address information needs to be 
written first. Then the bus direction should be reverted from writing to reading and, 
by toggling the cclk, the busy line should signal when data is ready. The Virtex-II 
selectMAP interface gives valid data at the same edge of cclk as busy goes low, while 
the Virtex-4 selectMAP interface gives valid data on the next rising edge of cclk. This 
means that the Linux driver that does the actual communication has to handle both 
ways of reading depending on which type of FPGAs is on the board. The driver and 
accompanying software for the selectMAP interface is covered in [25]. 

3.4.10 Radiation Tolerance Measures 

The probability that the DCS board will fail due to radiation related errors is not 
higher than 1 functional error per hour on all the 216 DCS boards in the TPC [7]. The 
DCS board is not part of the data flow so it is not considered mandatory to keep the 
DCS board from failing, as long as it is possible to return to a healthy system status. 
This implies that making the firmware in a way that increases the radiation tolerance 
of the FPGA has not been highly prioritised. Because of this, the most important 
measures that are done have been to detach the logic of the DCS board from the logic 
of the RCU Motherboard as much as possible. For instance, the handling of the 
incoming triggers has been moved to the RCU Motherboard, and the only 



61 

responsibility of the DCS board is to configure the TTCrx ASIC device. Additionally, 
it has been extensively tested that rebooting the DCS board will not have any effect 
on the RCU Motherboard, especially concerning the reconfiguration of the RCU 
main FPGA.  

Besides building the firmware with one-hot, safe state machines, the ComStat register 
is made more robust by using Triple Modular Redundancy (TMR) [26] and voting 
techniques (without feedback). This precaution is taken since this register has the 
global reset and the mode selection setting that would directly inflict with the RCU 
Motherboard in case of an error. Ideally, hamming encoding with feedback would be 
better suited for this register since then an error could be corrected when seen, but 
since this would involve changes also to overlying software, and since the ComStat 
register is overwritten on each transaction, TMR was chosen as an acceptable 
compromise. The reset and the mode lines are fed to an 8 bit long shift register and 
the actual reset signal is generated from a logical AND of all the shift register 
outputs. This is done to avoid radiation related glitches or temporary bitflips to reset 
the system or change the mode of operation. 

3.4.11 BusyBox and Trigger-OR Flavour 

This section describes the modifications done to make the DCS board fit the Trigger-
OR and BusyBox. From the DCS board point of view, there are two physical 
differences: 

• The RCU bus data width is reduced from 32 to 16 bits 

• There are dedicated lines for a selectMAP interface. 

Additionally the TTCrx ready line is forwarded to the BusyBox Motherboard to 
participate busy decision.  

The DCS board firmware for the Trigger-OR and the BusyBox is equal except for the 
pinning on the DCS-RCU connector15 and the TTCrx ready signal forwarding. An 
external module is added to enable the selectMAP bus. The enable signal is set by 
memory mapped register in the RCU Communication Module. This register is the 
only additional feature needed in the RCU Communication Module. The reason why 
this is needed is that the default value of all the registers in the Altera FPGA is 0, and 

                                              
15 For ease, the same naming convention is used for this connector even though it interfaces Trigger-OR and BusyBox. 
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at the same time the selectMAP bus has negative polarity on all control signals. This 
means that if the DCS board reboots during operation, the selectMAP bus lines will 
be driven low, and then the Xilinx FPGA on the Motherboard will be erased. Using 
the RCU selectMAP mode definition was considered, but turned down since it would 
then be impossible to use selectMAP communication and memory mapped 
communication in parallel. For the Trigger-OR this is essential as it will make it 
possible for the DCS board to execute the Active Partial Reconfiguration of the 
Trigger-OR FPGA while the system is running. Active Partial Reconfiguration is 
discussed in Chapter 4.  

 
Figure 3-7: Sketch showing the modification done for the Trigger-OR / 
BusyBox. 

The TTCrx ready signal is added for the BusyBox since each sub-detector should 
report busy if this is not asserted. If the TTCrx ready is not asserted, it implies that 
either there is a physical problem with the connection to the LTU, or that the CTP is 
issuing a global reset via the TTCrx. Since the only connection problem that can 
detected is on the link between the LTU and the BusyBox, it is the latter case that is 
the most interesting for TPC, PHOS and the other sub-detectors using RCUs and the 
BusyBox. 
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For ease, all the rest of the logic in the RCU Communication Module is untouched. 
This implies that the mode selection and the Flash interface, which is very important 
for the RCU Motherboard, are still included. A possible future modification of the 
DCS board firmware would be to add the possibility to add/remove these features at 
compile time, controlled by VHDL generics. 

3.5 RCU main FPGA in the Fee DCS 

3.5.1 Introduction 

 
Figure 3-8: The RCU main FPGA firmware. The Control Node is seen on 
the left, while the Readout Node is to the right.  
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The two main objectives of the RCU main FPGA firmware16 are to perform the data 
readout operation (see Chapter 5), and configure and monitor the Fee. The latter 
makes the RCU main FPGA a vital part of the Fee DCS. As seen in Figure 3-8 the 
firmware is split into two nodes depending on the task: the Control Node (left) and 
the Readout Node (right). The Control Node monitors temperatures, voltages and 
currents on the FECs and act upon threshold violations. The Readout Node 
configures the FECs via the Instruction Sequencer, the Result Unit and the ALTRO 
interface, and most importantly performs the readout operation.  

The Monitoring and Safety Module is the main module in the Control Node. As it is 
important that the readout process and the monitoring process do not affect each 
other, the Monitoring and Safety Module is controlled by the DCS board only. This is 
done by the DCS interface implementing two internal bus systems: 1) the RCU bus, 
of which it shares the role as bus master with the SIU interface, and 2) a separate 
internal bus system for the Control Node.  

The Instruction Sequencer and the Result Unit are not considered part of the Control 
Node as these modules are connected to the internal RCU bus, and are therefore 
shared between the two bus masters. This also enables the DAQ system to configure 
the FECs and for TPC this is the preferred solution. This section will only be 
concerned with the Control Node.  

3.5.2 DCS Interface 

 Introduction 
The DCS interface (Figure 3-9) is needed on the RCU main FPGA to have a single 
interface towards the DCS bus master on the DCS board, and to the wrap the 
asynchronous bus protocol to the internal synchronous bus structure. The DCS 
interface supports the different modes of which the DCS board communicates with 
the RCU Motherboard, by responding and driving the bus lines only in normal 
operation mode. The DCS interface will always acknowledge a transaction as long as 
it is within the memory space of the RCU main FPGA, and bus access is granted. 

                                              
16 Except for the DCS interface, the Trigger Receiver Module, and the SIU interface, the RCU main FPGA firmware is 
developed by the Electronics Department at CERN (http://ep-ed-alice-tpc.web.cern.ch/). The SIU interface is designed by 
the ALICE DAQ group at CERN (http://ph-dep-aid.web.cern.ch/ph-dep-aid/). The DCS interface and the Trigger Receiver 
Module is work that is the basis of this thesis. 
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This implies that if the address belongs to the RCU support FPGA or the DCS board 
firmware, the DCS interface will be silent.  

 
Figure 3-9: Simplified Sketch of the DCS interface. 

For the registers that are shared between the two bus masters of the RCU, the DCS 
and the SIU, the DCS interface makes use of a bus request/grant scheme. The bus 
request is handled by an arbiter. If the bus is not granted by the arbiter within a 
timeout period of 32 clks, the DCS interface will not acknowledge the transaction to 
the DCS board, and the transaction will time out on the DCS board side. It is possible 
to check who the owner of the bus is by reading a designated register in the DCS 
interface Slave Module, where both the bus grant signals are stored. If the SIU has 
the ownership, and the DCS board would need it, writing to a given register address 
in the internal slave will interrupt the ongoing operation on the bus and remove the 
bus grant for the SIU. There are registers in the RCU main FPGA that do not need the 
bus request/grant scheme, since the SIU does not have any access to them. These are 
the internal registers in the DCS interface and the registers in the Monitoring and 
Safety Module.  

As the FPGA do not have internal tristate buffers, the internal RCU bus protocol has 
one data out bus with three write enable signals depending on whether the data is to 
be received by the arbiter, the Monitoring and Safety Module or the internal logic. 
For the same reason there are three data input buses to the Synchronizer and Wrapper 
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process. The dedicated interrupt line from the FECs is routed to the DCS board, and 
as no masking on this line is needed it is not routed via the DCS interface.  

 Reset Strategy 
The DCS interface is also in charge of generating the resets from the DCS. The 
asynchronous reset line from the DCS board will be sent further as a global reset to 
internal logic. The global reset will reset both the FECs and the RCU main FPGA, 
while the fec_reset and the rcu_reset with reset either one. The fec_reset and the 
rcu_reset are soft resets, meaning that they only reset the status of the firmware and 
not the configuration of it. These resets are generated by writing any value to three 
predefined register addresses, and they are sent to a reset handling module that will 
prolong the reset pulses if needed (for instance for the fec_reset), and or them with 
the resets coming from the SIU that has the exact same reset strategy. The DCS 
interface itself can be reset by either the asynchronous reset from the DCS board or 
from the reset issued by the SIU. In this way it is always possible to reset the RCU 
FPGA, if needed, from both interfaces. All available registers in the DCS interface 
are listed in Table D-9. 

3.5.3 Monitoring and Safety Module 

 Overview 
The Monitoring and Safety Module is extensively described in [13]. It does three 
main tasks: 1) It is the I2C master towards the slaves on the Board Controller on the 
FECs, 2) it is in charge of the monitoring tasks, and 3) it is doing the low level and 
fast handling of the interrupts coming from the slaves. These three features are 
divided into an I2C Master interface, a Monitoring Module and Safety Module 
respectively. The DCS will continuously monitor the ADC values for all FECs during 
a run. These values will be available for the system operator in as a PVSS panel. A 
PVSS panel for temperature monitoring in TPC is shown in Figure 3-10, where half 
of the TPC A-side is powered. This is showing the TPC readout partitions and the 
green color means that the temperatures in all the FECs connected to the RCU in the 
readout partition are reported to be fine. It is possible to select each readout partition 
to get detailed information if needed[27].  
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Figure 3-10: PVSS panel for temperature monitoring in the TPC. (by ALICE 
TPC DCS group - C. Lippmann17) 

 Interrupt handling 
When an interrupt has been flagged by one of the connected FECs, the control status 
register of each card of the respective branch is polled by the RCU to find which FEC 
has issued the interrupt. This information is stored in a status memory. The interrupt 
line is directly connected to the interrupt controller of the ARM CPU on the DCS 
board to enable quick response from software. Depending on the severity of the 
interrupt, the card is either switched off by the Safety Module, for instance when an 
over threshold temperature reading has been done, or it is up to the higher level DCS 
to investigate the error further. This is defined to be a hard and a soft error 
respectively.  

                                              
17 Christian Lippman: Christian.Lippmann@cern.ch 
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3.6 PHOS FEC Board Controller 

3.6.1 Introduction and Requirements 

For both TPC and PHOS the Board Controller handles the low level monitoring and 
controlling tasks on the FECs. It makes the status of the FEC available via software, 
and together with the RCU quickly responds to any error situation that might occur.  

There are two buses enabling communication between the RCU and the Board 
Controller; the ALTRO bus and the Front-end Control (FC) bus. The ALTRO bus is 
a 40 bit parallel bus that is shared between the ALTROs and the Board Controller on 
the FEC, and is used for configuration and data readout, while the FC bus is a 
modified I2C protocol that is used for monitoring.  

The Board Controller should be able to do the following: 

• Monitor the health status of the board reading current levels, voltage levels 
and temperatures on the FEC. 

• Implement slaves for both bus protocols. 

• Notify the RCU via a dedicated interrupt line if any monitored values violate a 
configurable threshold. 

• Control the ALTRO bus signals and the GTL drivers used in the 
communication network with the RCU. This should be done both in register 
transaction mode and data readout mode of the ALTRO bus. 

• Enable the sparse readout functionality of the FEC, i.e. enable the RCU to read 
only channels where data have been buffered. 

• Configure the DACs that set the High Voltage Bias to the APDs. (Only 
PHOS). 

The concept of the PHOS Board Controller is based on the TPC Board Controller, 
adding extra functionality needed for PHOS and removing some other features not 
needed. Additionally it was discovered that some design choices of the TPC Board 
Controller were not ideal. The FC bus slave was implemented in a way that external 
errors easily could make it freeze so that the complete FC bus would be blocked. In 
general, the TPC Board Controller is not implemented considering the radiation 
environment the circuit is supposed to operate in, for instance are the registers not 
implemented with mitigation techniques to secure them against single event effects. 



69 

Additionally, the design is not easily scalable since it was not foreseen that the TPC 
Board Controller should be reused for other sub-detectors. One of the reasons for the 
lack of scalability is that no memories are used in the design, and the addressing 
scheme of the registers is inappropriate when redesigning for instance for PHOS that 
has three sensor ADCs instead of one. Because of this, major changes are done to the 
TPC implementation to make it suitable for PHOS and to make it more robust.  

3.6.2 TPC Board Controller 

The TPC Board Controller is extensively described in [13], but since the TPC Board 
Controller is an important module in the Fee DCS for TPC and the design is the base 
for the PHOS Board Controller, this section is dedicated to a short description of it. 
The core functionality of the TPC Board Controller is to monitor the health of the 
board, control the GTL drivers, and enable sparse readout and ALTRO testmode. The 
PHOS Board Controller has inherited all features except for the latter. The sparse 
readout and ALTRO testmode will be covered in section 5.4.2 as this is part of the 
data readout functionality.  

 Health Monitoring  
The main task of the Board controller is to monitor the health of the board. On the 
TPC FEC hosts an ADC (Analog Devices AD7417[28]) that has a 10 bit temperature 
sensor and 4 single channels analogue to digital converters. Two channels are 
connected directly to the supply voltages on the FEC, while the two other inputs are 
connected behind a resistor network so that the current drawn on the given supply 
voltages can be calculated. The Board Controller communicates with the ADC using 
an I2C bus protocol, and the I2C Master on the Board Controller can be configured to 
read these values continuously or on command from the RCU. 

 Error Condition Signalling 
The read back values are compared to a programmable threshold for each value. If 
the read back values exceed these thresholds an interrupt signal will be issued to the 
RCU Motherboard. There is one threshold for each value in the TPC Board 
Controller. The currents and the temperature have a threshold giving a high limit, 
while the thresholds of the voltages are given with a low limit. These thresholds give 
two levels of severity that both flags an interrupt to the RCU. If the thresholds of the 
temperature or current are exceeded, the RCU will immediately power off the board. 
As there is only one single shared interrupt line between all boards on a FEC, the 
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RCU will need to poll every single board on the branch that signalled the interrupt to 
find the source. In addition to the threshold violations, errors with the power 
regulators and clocks will generate interrupts. 

 Board Controller Glue Logic 
One part of the Board Controller consists of glue logic. The glue logic controls all 
signals driven on the bus as well as the GTL drivers. As the ALTRO bus is 
bidirectional, the direction of the GTL drivers for the ALTRO bus is controlled by 
this logic, both for Board Controller and ALTRO transactions. It is also possible to 
isolate the board, i.e. controlling the GTL drivers in such a way that the RCU can not 
interfere with the internal ALTRO bus on the FEC. This is used for instance during 
testmode and sparse readout, where the Board Controller becomes the bus master and 
is able to address each ALTRO on the board to read/write to the internal registers. 

3.6.3 PHOS Board Controller Introduction 

 Overview 
Even if the PHOS FEC and the TPC FEC have many similarities, the two boards 
differ in layout and functionality as seen in section 2.4.1 and section 2.4.2. The vital 
changes seen from the perspective of the Board Controller are the inclusion of four 
DACs with eight channels each for the High Voltage Bias settings, there are four 
ALTROs instead of eight, three ADCs for health monitoring as opposed to one and 
an USB interface device to the Board Controller is included. As the USB device was 
added only for functional test of the FEC during production and is not to be used in 
the final system, implementing an interface to the USB controller is not prioritized. 

The basis for the code is the FMD Digitizer which essentially is the TPC design 
ported to VHDL18 with some FMD specific add-ons. For PHOS the design is made 
flatter and the components that are not needed for the PHOS FEC are removed. This 
included all FMD specific components and the ALTRO Testmode Module (section 
5.4.2). The latter was removed since the purpose of the ALTRO test mode is to 
monitor the ADC inputs of the ALTRO, which is a feature that is most useful during 
hardware development[29]. When the PHOS Board Controller was designed, the 

                                              
18 The FMD Digitizer is written by Christian Holm Christensen at the University of Copenhagen. More information: 
http://fmd.nbi.dk/ 



71 

FEC was already finished, making the resources used by the test mode 
implementation better utilized with other features. The rest of the modules are kept, 
but, as already stated in section 3.6.1, needed redesign. 

 
Figure 3-11: Simplified sketch of the Board Controller. 

A sketch of the top level is given in Figure 3-11 that shows all the sub modules of the 
PHOS Board Controller. The different sub modules implement different tasks. The 
Drivers module is the glue logic that controls the GTL drivers and the signals on the 
ALTRO bus and FC bus. The ALTRO Switch Mask In does a combinatorial masking 
of ALTRO bus input signals and internal mask bits. It will for instance mask out fake 
error conditions reported by the voltage regulators when they are disabled on 
purpose. The sparse readout functionality is implemented by the EventLength 
Manager, and the purpose of this module is to scan the Event Length register of each 
ALTRO channel to verify if it contains data. The ALTRO interface decodes the 
information coming on the ALTRO bus. It verifies if the transaction is meant for the 
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actual slave and acts accordingly. The Slow Control Slave is the FC bus slave, which 
is a modified I2C interface that decodes information coming on the FC bus. The 
Interface Decoder is a fairly advanced module in the Board Controller for TPC and is 
used to decode commands and set error bits when an unknown address is recognized. 
For PHOS, this has been reduced to a simple multiplexer between the interfaces that 
reports an error if the two interfaces are trying to access the registers at the same time. 
The heart of the Board Controller design is the Registers module. All the memories 
and registers are placed here, as well as the logic for identifying threshold violations 
in the ADC values. The ADC values are read by the ADC interface, which 
implements an I2C bus master towards the ADCs. The High Voltage Bias is set by 
DACs that are interfaced by the serial DAC interface. 

In addition to the DAC interface, the main functional changes opposed to TPC are 
that all monitored values are optionally verified against high and low threshold 
settings that are stored in designated memories. It is also possible to set a 
configurable value from 1 – 3 of how many times a given value should violate the 
threshold before it fires an interrupt. This is done so that possible transaction errors in 
the ADC interface will not affect the complete FEC. The FC bus interface is made 
more robust against external errors and all memories and registers that hold relatively 
static information have increased radiation tolerance by the use of various mitigation 
techniques.  

3.6.4 Registers 

The Registers Module of the Board Controller (see Figure 3-12) implements most of 
the core functionality. It consists of a Register Block, a Health Status Module and 
three counters. The sampling clock counter counts the sampling clock to calculate the 
ratio between the system clock and the sampling clock, and two additional counters 
count the L0 and L2a triggers received. The trigger counters can be used to verify 
that the actual FEC is in synch with the RCU and the other FECs in the same sub-
system. 

The Register Block maps all register and memory addresses in the Board Controller. 
The address mapping is given in Table D-10, and is defined like this for a purpose. 
All the registers that are equal to the TPC Board Controller have inherited the address 
location from TPC while the PHOS specific registers have been moved outside of the 
address space of TPC. The reason for doing this is to make it possible to reuse more 
of the DCS software for TPC, while securing that reading/writing to illegal addresses 
in PHOS does not give any unwanted behaviour. In addition, the use of memories 
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makes it more economic to place for instance all the temperature, voltage and current 
values within the same address area. All memories (DAC value memory, ADC value 
memory, ADC threshold memories) are set up with two masters: the external 
interface to the RCU and the interface to the internal modules using the memories. 
The external interface has priority, and the internal modules must wait for the 
external transaction to finish before resuming any ongoing operation.  

 
Figure 3-12: Block schematic of the Registers Module. 

The definition of the Control/Status Registers (CSR) of the Board Controller can be 
seen in Table D-10. These registers are used to configure the Board Controller and 
enable a first level status check. If the status shows that something is not as expected, 
other registers exist with more detailed information, for instance concerning 
hamming errors etc. The CSR0 and the CSR1 registers are highly important since 
they are polled by the RCU in case of an interrupt. The CSR1 register holds the status 
of all the interrupt sources on a FEC, while the CSR0 is a mask register for CSR1 that 
tells the RCU which error conditions should trigger an interrupt. The other interrupt 
sources besides the monitored values are the error lines from the voltage regulators, 
and the status of the sampling clock compared to the system clock. As the two clocks 
are dependent on each other they should have an expected ratio between them. If not, 
it indicates a problem with the clock distribution on the FEC. The threshold 
violations reported in CSR1 is a combination of various violations that are reported 
by the Health Status Module. All the threshold violations are additionally reported 
individually in a separate register. The CSR2 register enables the power regulators for 
the different parts of the board and also the clocks to the ALTROs and the DACs. An 
additional feature that has been added in the PHOS Board Controller is hamming 
encoding of the memories for storing ADC threshold values and DAC settings. In 
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CSR2 it is possible to enable this, since this is per default disabled for backward 
compatibility. The format and location of the CSR0 and CSR1 are kept strictly to 
TPC convention since this is expected by the RCU. 

3.6.5 Health Monitoring 

 
Figure 3-13: The Monitoring ADC is interfaced to the Board Controller with 
a standard I2C protocol. To the left is a principle drawing of the voltage 
measurements done by the ADC.  

ADC Address Location on FEC 
IC13 “000” Top: Between ALTRO 0 and ALTRO 2 
IC15 “001” Top: Power Regulator Area 
IC14 “010” Bottom: Between ALTRO 3 and ALTRO 4 

Table 3-1: ADCs used for monitoring in PHOS Fee 

There are three ADCs of type Analog Devices AD7417 [28] placed in different areas 
on the board (see Table 3-1 and Figure 3-13), and these are controlled using a 
standard I2C bus protocol. The AD7417 has 4 single channel ADCs and a 
temperature monitor inside. In PHOS these are used for reading out altogether 6 
different voltage levels with accompanied current consumption in addition to the 
temperatures on three different locations on the board. This gives altogether 15 values 
that are monitored. 

The values that are monitored are explained in Figure 3-13, that show a principle 
drawing on how voltage and current is monitored. Basically, the voltages on input 
ADC1 and ADC3 are the actual voltage level, only downscaled by resistor R1 to 
match the input range of the ADC. The ADC2 and ADC4 are used as reference 
voltages to calculate the current, by using Ohms Law over resistor R6. This resistor is 
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so small compared to the others that the current flow in the others is negligible. Again 
resistor R2 is used for downscaling. The conversion factors given in Table D-13 are 
calculated based on these resistor values. ADC IC15 that measures the -6.0V, has an 
offset of 8.2V in the measured value since a Zener Diode with a voltage drop of 8.2V 
[30] is included in the resistor network.  

All the instructions for reading/writing are placed in a ROM. If the sequencer is told 
to start conversion, the ADC channels are read one by one, until all 15 values from 
the ADCs are put into the ADC Value Memory. The AD4717 is able to do 
verification of the temperature against a programmable threshold and set an over-
temperature flag. This feature is not used on the FEC since testing on voltage and 
current thresholds are also required. For consistency all threshold verification are 
done internally in the Board Controller. 

Table D-13 shows the ADC Value Memory where the values are grouped after ADC, 
as given in Table 3-1. An ADC reading can run continuously – which is normal 
operation mode – or start on a command given by the RCU. Whenever a new ADC 
value is received from the ADC interface, the value is tested against the high and low 
threshold, given in the threshold memories (Table D-11 and Table D-12). Prior to the 
value being written to memory, the Health Status Module looks up two configuration 
registers, the ADC difference and the ADC difference direction. The first register 
decides if the value stored should be the difference between the previous value and 
the actual value, while the second register sets the sign of the difference. These 
settings are needed for calculating the current while at the same time trying to keep 
the design as generic as possible and give increased debug possibilities. The 
memories for the high and low thresholds have the same architecture as the memories 
for the values, except that these memories are hamming coded. If a single hamming 
error is found when reading these memories, the value in the memory is corrected. A 
double error is reported in the hamming error register. The ADC value memory is not 
hamming coded since it is updated frequently and since the threshold test is done on 
the input value of the memory, not on the memory value itself. The ADC threshold 
memories and the ADC value memory have the same addressing scheme, implying 
that there is a one to one correspondence between the values in a given sub address. If 
a location of the threshold memory has a zero value, it means that the threshold is 
undefined, and no check will be done.  

If a threshold violation has occurred, an error counter is counted up for the given 
ADC value. If this counter reaches a configurable value from 1 to 3, an interrupt is 
issued. For backward compatibility, the default value of this limit is set to 1. This is 
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implemented so that the interrupt will not be fired when it is a false alarm, i.e. if a 
transaction error in the ADC interface has occurred.  

3.6.6 High Voltage APD Bias Settings 

 
Figure 3-14: Principle drawing showing the control of the DACs that set the 
bias voltage for the High Voltage APDs. 

In the complete register table given in Table D-10, the High Voltage APD bias 
settings memory and some of the status registers dedicated to these settings are listed. 
Setting the High Voltage Bias in practice means to set the output of 4 individual 8-
channel Maxim Max5308 DACs [31] that set the bias voltage to 32 APDs. See Figure 
3-14. The APDs are not on the FEC itself, but are placed on small mezzanine cards 
that sit directly on the crystal rod. The High Voltage bias memory holds all the 
hamming coded values to be used for updating the DACs. The make the order of the 
APD bias settings in memory match the crystal mapping, the order is derived from 
the physical location of the APDs.  

The DAC interface has a hamming decoder performing a hamming check before the 
value is written to the DAC. If a single bit error is found the DAC value memory is 
updated with the correct value. If a double error is found it is reported in the DAC 
hamming error register and the given DAC is not updated. The High Voltage 
Feedback Registers (HV_FB1 & 2) report which DACs have been updated. Normally 
all DACs should be on after a command has been sent. If this is not the case the 
reason is most probably due to a double hamming error or a communication error 
with the given DAC.  
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Figure 3-15: Flowchart showing the sequence executed for setting the bias 
voltage for the APDs.  

Each DAC is set via a 16 bit shift register. They have separate data out, data in and 
chip select signals and one common clock line. On the data out line from the DAC 
the 16 bits that were shifted in last time are directly shifted out. In the DAC interface 
this is used to verify that the bits shifted in the last time are correctly received by the 
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DAC. The Power up command is sent to all channels, pulling the output of the DAC 
to the configured voltage for the channels that are not in error. These erroneous 
channels will be set to 0V. The sequence that is executed when setting the DACs is 
shown in Figure 3-15. 

3.6.7 RCU Communication  

The RCU communicates to the Board Controller via two separate buses; the ALTRO 
bus and the FC bus. For the ALTRO bus this section deals only with the ALTRO 
register read/write protocol. The ALTRO bus can also be switched to a data push 
mode, where the ALTROs or the Board Controller will push data from the FEC to the 
RCU. The implementation of this feature will be discussed in section 5.4.2.  

 ALTRO Bus Interface 
While the ALTRO interface has been redesigned for PHOS Board Controller, the 
external functionality is fully kept, both concerning the bus structure and also the 
interface to internal logic. The latter is a simple synchronous bus protocol featuring 
data, address and a write enable signal. The external ALTRO bus protocol is defined 
in [14]. For debug purposes, the ALTRO interface stores the last acknowledged 
address and the last not acknowledged address in two separate registers. This gives 
valuable debug information in case there are failing bus transactions. 

 FC Bus Interface 
The FC bus protocol as used in the TPC and PHOS Fee is a slightly modified version 
of the normal I2C protocol [32] as defined by Philips almost 20 years ago. The 
original definition consists of one clock line and one bidirectional serial data line. For 
the RCU the bidirectional data line is replaced by one input and one output data line. 
The RCU is the I2C master, while all the Board Controllers are slaves. The FC bus 
protocol is defined in [12]. 

The I2C protocol is a serial bus protocol that transmits byte size data packets 
surrounded by start and stop conditions. In general, the I2C protocol allows for 
various numbers of data packets, but the TPC/PHOS Fee define that four packets of 
data are always transmitted. The first packet is the FEC address and a read/write bit. 
The second packet contains the register address. The third and the forth packet 
contain the data, and this is either sent or received by the slave depending on the 
setting of the write bit.  
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The PHOS FC bus slave is based on the same structure as for the TPC, but some 
modification has been done to make it more robust against external errors. In PHOS, 
it was seen that with the TPC slow control slave the transmission failed without any 
reported errors when more cards than one on a branch were powered at the same 
time. The reason for the error was most probably that one of the not addressed slaves 
got into an illegal state and blocked the other slaves from using the shared data line. 
As the PHOS module was sealed when doing these tests, it was not possible to 
physically measure on the backplane to verify the qualified assumption. 

Several measures were taken to prevent one slave from blocking the rest of the 
communication. Originally a slave not addressed would return to idle immediately 
after the FEC address was decoded and checked, and then wait for a new start 
condition. This is changed so that the slave decodes all that is received on the FC bus 
no matter if the card is addressed or not. This ensures that a fake start condition 
caused by glitches on the bus or other external errors will not cause a slave to expect 
a full transaction and therefore get stuck in a wait state. If the card address received is 
not correct, a mask bit is set to mask both the external output data line and the 
internal write enable to the registers. Additionally, timeout counters for each byte 
received are implemented. It takes 78 clks (system clock) to receive a one byte 
packet, and for convenience the timeout period is set to 128 clks. 

Other modifications that have been done to the FC bus slave are that the internal 
interface has been changed so that the ALTRO interface and the FC bus slave both 
share the same protocol and signal names. In addition, the FC bus slave does no 
longer decode the received register address information. For the PHOS Board 
Controller this is only done in one location; in the register block. 

3.6.8 Radiation Robustness Measures 

The PHOS FEC is located in a radiation environment and the Altera FPGA might 
experience SEUs inducing functional errors in the design. The ADC threshold 
memories and the DAC settings memory implements a configurable possibility to 
hamming code the values. The hamming code is checked every time the memory is 
read by internal logic, and if a single bit error is seen the memory location is 
corrected. If a double bit error is found, this is reported in designated status registers.  

Important configuration registers are secured by TMR and voter logic. This has been 
done since all of these registers are close to 16 bits wide. 16 bits are the maximum 
width that is handled by the special I2C bus protocol. Adding hamming encoding to 
these registers implies that the RCU would need to write the hamming code to an 
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additional register, if not the Board Controller would generate it itself. Although 
TMR without feedback as used in this case is not the ideal solution, it was decided to 
be a good compromise between needed radiation tolerance and a user friendly system 
design.  

The design is synthesized using safe one-hot state machines for increased radiation 
tolerance. Additional protection of vital state machines have not been done due to 
area and timing constraints.  
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Chapter 4  
 
 
RCU Radiation Tolerance Solution 

The RCU is located in a radiation environment, and since the main FPGA on the 
RCU is SRAM based, it is susceptible to radiation related errors. This chapter will 
first give a short introduction to single event effects, and ways to deal with these 
problems. The technology choice of the RCU is then discussed, with details on the 
architecture of the Xilinx Virtex-II Pro, which is the device selected. The remainder 
of the chapter is dedicated to the solution for Active Partial Reconfiguration on the 
RCU Motherboard. The Active Partial Reconfiguration is a feature with the selected 
FPGA that makes it possible to correct radiation induced errors in the configuration 
memory.  

4.1 Radiation Effects in Integrated Circuits 

4.1.1 Single Event Effects 

As discussed in section 1.5, the Fee in TPC and PHOS are located in a radiation 
environment. Integrated circuits operating under such conditions can be expected to 
experience erroneous behaviour due the radiation they are exposed to. The effects of 
the radiation are usually divided into single event effects and cumulative effects. A 
single event effect results from a single energetic particle and has a statistical nature, 
while the cumulative effects are related to the absorbed dose in the material over 
time.  

Cumulative effects can alter the electrical properties of the device, by for instance 
changing the switching thresholds of the transistors, hence increasing the probability 
for single event effects. However, due to the relatively low expected dose rates for the 
Fee in ALICE, cumulative effects are not of concern. The simulated dose for the 
innermost  readout chambers in the TPC over the ALICE lifetime is maximum 6 Gy, 
and it has been verified in irradiation tests of the Flash based devices on the RCU that 
the limit of break down is worst case a dose of 6.8 kRad[7], which equals 68 Gy, i.e. 
well above the expected dose.  
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Figure 4-1: An energetic incoming proton interacting with the silicon in the 
transistor causing a nuclear reaction. The reaction products (Mg and α) are 
generating dense ionizing tracks inducing an SEU. The gammas are not 
included in the drawing and the proton is still to energetic to directly cause 
an SEU. 

Single event effects are, on the other hand, a major concern. The single event effects 
can be ordered after permanency in three levels[26]: SEU, Single Event Latchup and 
Single Event Burnout. SEUs are expected to be the main concern for the electronics 
discussed in this thesis. An SEU is defined by NASA as “A radiation induced error in 
microelectronic circuits caused when charged particles (usually from the radiation 
belts or from cosmic rays) lose energy by ionizing the medium through which they 
pass, leaving behind a wake of electron-hole pairs”.19 An SEU is considered to be a 
soft error, which means that rewriting the memory location will clear the error. One 
process for generating an SEU is a single heavy ion that strikes the silicon and 
generates electron-hole pairs along the track. The heavy ion can either come from an 
external source, or it can be a recoil ion from a nuclear reaction caused by high 
energetic hadrons hitting the silicon nuclei. The latter is the main cause of SEUs in 
ALICE and a principle illustration is shown in Figure 4-1. Either way, the result is a 
charge deposition that can be modelled by a transient current pulse. This current 
pulse can be interpreted as a signal in the circuit that causes an upset. If this happens 
in an SRAM memory cell it might cause the memory cell to flip its value and that 
may in turn have an impact of the functionality of design in the integrated circuit. 

                                              
19 http://www.sti.nasa.gov/thesfrm1.htm 
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4.1.2 Single Event Upset Mitigation Techniques 

There are several techniques developed for dealing with the problems of single event 
effects. These can be categorized as follows[26]: 

• Fabrication process based techniques. For instance advanced processes such 
as Silicon-on-insulator. 

• Design based techniques. These are divided into two sub groups: 

o Detection techniques: Hardware redundancy, time redundancy, Error 
detection coding (EDC), and checker techniques. 

o Mitigation techniques: Triple modular redundancy, multiple 
redundancy with voting, Error detection and correction coding (EDAC) 
and hardened memory cell level. 

• Recovery Techniques (only applicable to programmable logic): 
Reconfiguration, Partial Reconfiguration and Rerouting Design 

The fabrication process techniques will reduce total ionizing dose effects and the 
probability of single event latch-ups to an acceptable level, but they will not remove 
the occurrence of SEUs completely. The design based techniques are widely used 
since they can be used at many different levels without changing the fabrication 
process, which can be very expensive. The various types of redundancy techniques 
are based on the same principle, that if one path fails there will be others working 
hence giving correct result at the end. EDAC codes can also be viewed as a 
redundancy technique, since redundant bits are used to detect and correct errors. 
Many of the EDAC codes were developed to deal with transmission errors and other 
types of errors long before the problems of single event effects were known. The 
different types of EDAC codes are explained in for instance [26]. Hardened memory 
cell is a different mitigation technique where the memory cell is composed with 
additional devices to make it less vulnerable to SEUs. Many examples of such 
memory cells are mentioned in [26]. 

This chapter will mainly focus on the third point on the list; Recovery Techniques. 
Active Partial Reconfiguration is described in section 4.3. As part of this work a 
design has been made for performing partial reconfiguration of the Xilinx Virtex-II 
Pro on the RCU Motherboard.  
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4.2 Choice of Technology 

4.2.1 FPGA Technologies 

There are different types of FPGA technologies in the market. These are categorized 
by the technology of the programmable switch used as configuration memory. The 
standard types available are: 

• SRAM, where the programmable switch is controlled by an SRAM memory 
cell. 

• Flash (or EPROM/EEPROM), where the switch is a floating gate transistor 
that can be turned off by injecting charge onto the floating gate. 

• Antifuse, where an electrically programmable switch forms a low resistance 
path between two metal layers. 

SRAM based FPGAs are volatile, meaning that they can be reprogrammed an infinite 
number of times. It also means that when the power is cut, the content of the SRAM 
cell is lost and it needs to be reconfigured at power on. The Antifuse and Flash based 
FPGAs are non-volatile, meaning they keep their programming during a power break. 
The Antifuse FPGA can only be programmed once, while the Flash based FPGA can 
be programmed a certain number of times (typically around 100000) before the Flash 
memory cells begin to fail.  

The configuration elements of the Antifuse FPGA are not susceptible to single event 
effects at all, since they are more like standard cell ASICs. The Flash based FPGAs 
are less susceptible to single event effects than SRAM based FPGAs, but they may 
fail completely if absorbing a high enough dose[7]. 

4.2.2 Why an SRAM based FPGA is selected on the RCU 

Selecting a commercial grade SRAM based FPGA may not seem as a logical choice 
for a system operating in a radiation environment, so prior to selecting the Xilinx 
Virtex-II Pro FPGA as the main FPGA for the RCU Motherboard different integrated 
circuits were investigated. With an ASIC the radiation problem would only be at the 
level of the design, and existing mitigation techniques would be sufficient. There are 
two main reasons why an ASIC was not chosen. The most important being that an 
ASIC can not be updated at a later stage, meaning that the system will not be 
adaptable as it is with an FPGA. Adaptablility is of vital importance in a complex 
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project like ALICE, since it is at the time of board design very hard to foresee the 
requirements of the RCU to a detail that would be needed with an ASIC. Last minute 
changes can be foreseen and then an ASIC is not the correct choice. Secondly, it 
would be much more expensive with an ASIC than with a FPGA for the relatively 
low amount of devices needed (<1000). Flash based and Antifuse FPGAs have 
historically been smaller and simpler than the SRAM based FPGAs, and at the time 
that the device choices were made no large enough Flash based FPGA could be 
found. Since Flash based FPGAs also need a higher programming voltage, on-site 
programming is not as easy compared to SRAM based FPGAs. Charge pumps can 
generate the needed programming voltage on the board without supplying it 
externally. The downside is that these circuits are generally not very radiation 
tolerant, meaning that the programming action can only be done when the radiation 
levels in the ALICE pit are low. The radiation hard SRAM based FPGAs were simply 
too expensive.  

In the end a commercial grade SRAM based FPGA was selected. The Xilinx Virtex-
II Pros are fairly inexpensive devices, future upgrades are possible, they offer the 
resources needed, and they offer an option to do Active Partial Reconfiguration 
(section 4.3). Combined with different error detection and correction coding 
techniques, the Active Partial Reconfiguration will reduce the influence of SEUs to a 
negligible level. The main advantage of Active Partial Reconfiguration is that it is a 
technique that directly deals with errors in the configuration memory of the FPGA 
opposed to other mitigation techniques.  

4.3 Active Partial Reconfiguration 

4.3.1 Xilinx Virtex-II Pro XC2VP7 Architecture 

The configuration memory of the Virtex-II Pro, as with other Xilinx devices, is 
divided into different areas that contain different types of logic. A 3-dimensional 
address of these areas is given by blocks, major frames and minor frames. A minor 
frame is the atomic unit of the configuration memory, and is more often referred to as 
a frame. The size of a minor frame for the Virtex-II Pro XC2VP7 device is 424 bytes, 
but for Virtex-II devices this number varies with the size of the device. The major 
frame contains a given number of minor frames. The major frames are divided into 
different types depending on what kind of logic it configures, for instance global 
clock logic (GCLK) frames, frames containing input/output (IO) blocks (IOI/IOB), or 
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frames containing configuration logic blocks (CLBs). How many minor frames per 
major frame there are, is decided by the type of major frame. The highest level of 
addressing; the block number separates the configuration memory into three 
independently addressable blocks of major frames. Block address 0 contains all the 
major frames as mentioned above, block address 1 contains all the Block RAM 
(BRAM), while block address 2 contains all BRAM interconnects.  

 
Figure 4-2: The configuration memory map of the Xilinx Virtex-II Pro 
XC2VP7 FPGA showing blocks and major frames. Edited from [16]. 

Figure 4-2 shows the configuration memory map of the Xilinx Virtex-II Pro XC2VP7 
device. As seen in the figure, this device consists of 1 GCLK major frame, 2 IOB 
major frames, 2 IOI major frames, 34 CLB major frames, 6 BRAM major frames and 
6 BRAM interconnect major frames. Only the major frames are shown in the figure, 
as only these are possible to map against the actual layout of the device. This could 
be interesting to be able to pinpoint the exact location in the design space that has 
experienced an SEUs. This is especially true if the design is constrained so that 
different parts of the logic are mapped to certain locations. 

4.3.2 Configuration of Xilinx Devices 

Virtex-II devices support Partial Reconfiguration which is defined by Xilinx in [16] 
to be ”Rewriting a subset of configuration frames, either while user design is 
suspended ("Shutdown" partial reconfiguration) or while the user design is operating 
("Active" partial reconfiguration).” There are two reasons for wanting to perform 
partial reconfiguration. The first is to change design behaviour on certain parts of the 
device by changing one or more sub modules, a filter for instance, while the design is 
active. This gives strong restrictions to how the inter modular communication is 
constrained. The other reason is to correct memory upsets in high radiation 
environments, which is the reason for using it on the RCU.  
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A configuration file for a Xilinx FPGA consists of three parts whether it is a file for 
initial, full configuration or partial configuration. This is shown to the left in Figure 
4-3. The configuration interface of the Xilinx Virtex-II Pro device consists of a set of 
registers for initialisation of the configuration process. This initialization – that can be 
setting the number of frames to write, start address of first frame, enabling of 
readback etc., is done by the header of the configuration file. One of these registers, 
the Frame Data In Register, is used for writing the configuration data to the device. 
This register is a frame buffer, and the writing of frames is pipelined. This means that 
the first frame is written to the configuration memory while the second frame is being 
shifted into the frame buffer. This implies that a pad frame must be written after the 
last frame of configuration data. Figure 4-4 shows a simplified sketch of this concept. 
The Frame Data In Register or the frame buffer is shown in the left. This way of 
updating the configuration memory, by shifting data into a buffer and then 
performing a copy operation opposed to shifting data directly through the 
configuration registers, is what makes Active Partial Reconfiguration possible. 

Configuration File Header

Configuration Data Frames

Configuration File Footer
Pad Frame

                          
Figure 4-3: Left: Structure of a Xilinx configuration file. Right: Structure of 
the generated frame files: Write-frame file and read-frame file. 

Active Partial Reconfiguration on the RCU is done in two ways: Continuously 
overwrite the configuration memory regardless if there has been an error or not 
(scrubbing), or read back the configuration memory frame by frame, check for errors 
and overwrite the frame if errors are found. For scrubbing, a file generated by the 
Xilinx development kit is used. For frame by frame read back, tailor made software is 
written that recognises the individual frames in the original programming file, splits 
this into individual frame files and adds header and footer that hold command 
sequences for either reading or writing a frame. The frame files are stored as an 
answer book on the Flash Memory Device, and used for comparison and correction 
when reading the frames in the radiation environment. The format of the frame files 
is shown to the right in Figure 4-3. The write-frame file consists of a file header that 
addresses the given frame, a data frame followed by a pad frame to shift the data 
frame in, and at last a footer. The footer ends the write operation by disabling the 
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selectMAP interface. The read-frame file has the same setup, except for the lack of 
pad frame. Reading the configuration memory is also done in a pipelined way as it is 
for writing. In this case this implies that the first frame that is read is irrelevant, since 
the frame output buffer has not been filled with data. The second frame that is read 
out is verified against the content of the answer book read-frame, and then the read 
footer is written to the Xilinx to end the operation.  

 
Figure 4-4: Simplified sketch showing the concept of writing to the 
configuration memory of the Xilinx Virtex-II Pro 

The reason for generating individual files for reading and writing frames is to keep 
the internal structure of the RCU support FPGA firmware as simple as possible as no 
selectMAP command coder is then needed. A very important point is also that when 
solving it this way, it is at any point in time possible to update the header/footer 
information that contains all the selectMAP commands. Not only does this make the 
design more fault proof as nothing is hard coded, but it also makes it possible to 
change the reconfiguration scheme. One can for instance verify a group of frames that 
maps to a certain sub module in the design, instead of just a single frame at the time.  

4.3.3 SelectMAP Interface 

There are several ways of communicating with the configuration memory in a Xilinx 
Virtex-II Pro [6], but only JTAG and selectMAP operated in slave mode are possible 
to use when partial reconfiguration and readback is to be implemented. The 
selectMAP interface provides an 8-bit bidirectional data bus interface to the Virtex-II 
Pro configuration logic, and therefore provides a much faster interface than JTAG 
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does. Slave selectMAP mode means that the configuration clock is externally driven 
by the configuration controller device, opposed to master selectMAP mode, of which 
the configuration clock is controlled by the device itself. The RCU uses the 
selectMAP interface in a controlled clock fashion, implying that the configuration 
clock is toggled only when there is data ready, while chip select is kept asserted.  

 
Figure 4-5: Waveform showing the principles of an initial configuration 
sequence in slave selectMAP mode with a controlled clock scheme of a 
Xilinx Virtex-II Pro device. 

The waveform for an initial configuration process in slave selectMAP mode with 
controlled clock is shown in Figure 4-5. The prog_b signal starts the initial 
configuration sequence. This erases the Xilinx configuration if kept low more than 
300 ns. The device responds by pulling down init_b and releasing it after prog_b is 
asserted again. Then the device is properly initialized and ready to receive the data 
file including header and footer.  

The data loading starts when deasserting rdwr_b and cs_b. This has to be done in this 
order or it can be interpreted by the device as the start of an abort sequence. The 
device responds by pulling low busy as a signal that it is ready to receive data. Data is 
then put on the bi directional bus and cclk is toggled. The device samples the data on 
rising edge of cclk. The max frequency for cclk is 50 MHz. After all the data has been 
loaded, the device goes into startup phase, and if everything is ok, the done pin is 
pulled high. This pin is high whenever the Xilinx is configured. For partial 
reconfiguration the initialization should not be done, since this erases the Xilinx. The 
startup is also not needed since the design in the FPGA is already alive and well. 

4.3.4 Limitations of Active Partial Reconfiguration 

Active Partial Reconfiguration puts special constraints to the user design. A certain 
part of the CLBs are Look Up Tables (LUTs). These LUTs can during synthesis be 
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defined to be used as memory elements. This is area economic for instance when 
building large shift registers. As the memory elements used in the LUT are part of the 
configuration memory as well, this feature must be disabled when running Active 
Partial Reconfiguration, or else these memory locations will be overwritten with the 
default value in the scrubbing file or the frame files.  

The BRAM part in the Xilinx can not be reconfigured during runtime, since these 
memory elements are accessed both from the design space and the configuration 
space by the same interface. If looking into the original programming file, the default 
values of the BRAM as set in the design can actually be seen. The BRAM must be 
secured against SEUs by the use of hamming encoding or other SEU mitigation 
techniques. Also, since the internal frame counter increments automatically at the end 
of each frame when writing data to the input frame buffer, the very first major frame 
of BRAM can not be used in the design and must be prohibited in the design 
constraint file.  

An additional limitation when relying on Active Partial Reconfiguration is that the 
configuration stream can not be encrypted and readback must be enabled. This is not 
a real constraint for the actual project discussed here since this is anyway open 
source, but might be a limitation in industrial projects. 
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4.4 Active Partial Reconfiguration Solution on the RCU 
Motherboard 

4.4.1 Introduction 

 
Figure 4-6: Sketch showing the RCU, emphasizing the solution for Active 
Partial Reconfiguration in the bottom right. The data path is given by black 
arrows. 

The solution for Active Partial Reconfiguration of the main FPGA on the RCU 
Motherboard is shown in Figure 4-620. It consists of a Flash based support FPGA 
(Actel ProASICplus APA075 [17]) that communicates both with the selectMAP 
interface on the Xilinx Virtex-II Pro, and to an on board Flash Memory Device[18]. 
The RCU support FPGA and the Flash Memory Device has been found radiation 
tolerant for the dose and flux that are expected in ALICE[7]. The support FPGA has a 

                                              
20 The firmware design of the RCU support FPGA is done in cooperation with Ketil Røed, Bergen University College 
(ketil.roed@ift.uib.no)  
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communication interface upwards to the DCS board. All needed configuration files 
for the Xilinx are stored on the Flash Memory Device, and the RCU support FPGA 
offers three main options for configuration: 

• Initial Configuration. This option will erase any design that is loaded into the 
Xilinx before uploading a new design from the Flash Memory Device. 

• Complete Reconfiguration (Scrubbing). This option will overwrite the 
configuration memory regardless if errors have occurred or not. 

• Frame by Frame Readback, Verification and Correction. In this mode of 
operation, each individual frame is generated from the original programming 
file and stored as an answer book on the Flash Memory Device. These files are 
then to be used for comparison when reading back the same frames in the 
radiation environment. Any errors found are counted and the frame address 
that contained the error is stored. The errors are then automatically corrected 
by overwriting the given frame. 

The firmware on the RCU support FPGA needs to be simple and efficient, as general 
as possible and most importantly; 100% working from the day of installation – as no 
later upgrades can be done. With this in mind, as much workload as possible is 
handed over to the DCS board, making the Active Partial Reconfiguration Firmware 
only do as basic tasks as possible. 

4.4.2 RCU Flash Architecture 

As shown in Figure 4-7 the RCU Flash Memory Device is divided into to 3 different 
spaces: The pointer space, the info space and the file space. This ensures a 
configurable system, where as little as possible information is hard coded in the RCU 
support FPGA firmware. It will also make it possible to change the location of the 
files in the Flash Memory Device if this is needed over the lifetime of the experiment, 
for instance due to weariness of the Flash Memory Device itself.  

The pointer space is located in the boot section of the Flash Memory Device, since 
the sectors in this area are 8 Kbytes opposed to 64 Kbytes on the rest. This makes it 
possible to erase one single pointer and redefine it to point to a different location on 
the Flash Memory Device. In this way, several designs can be stored at the Flash 
Memory Device at the same time if needed. The pointer space contains pointers to the 
location of the info space. The addresses of the pointers are predefined and can not be 
changed. A pointer value of 0xFFFF, which is the default value of an empty Flash 
Memory Device, means that the pointer is undefined and the Flash Memory Device 
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needs to be initialized. The info space holds information on the location of the 
programming files on the Flash Memory Device. Excessive information is stored 
concerning the individual frames as the handling of the frame files are a bit more 
complicated than for initial configuration and scrubbing. In the file space all the 
different files are stored. For initial configuration and scrubbing, this is one file each. 
For frame by frame readback, verification and correction the number of files are 
twice the number of frames to verify, since there is one read frame and one write 
frame defined. This is divided into a read block and a write block that are divided by 
a configurable offset.  

 
Figure 4-7: Logical architecture of the RCU Flash Memory Device.  

Additionally, the firmware version of the configuration files stored on the Flash is 
also found in the initial configuration information space. This gives the upper DCS 
layers a possibility to automatically verify that all RCUs are in synch at startup. In the 
future, more information might be added in the info space if needed. This information 
will not be used by the RCU support FPGA.  
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4.4.3 Firmware Overview 

A block diagram of the RCU support FPGA firmware is shown in Figure 4-8. The 
firmware enables three modes of operation: Normal Operation mode, selectMAP 
mode and Flash mode. The two latter modes are direct tunnels to either the Xilinx 
selectMAP interface or the RCU Flash Memory Device interface. These two 
interfaces are implemented on the DCS board, as described in section 3.4. The mode 
of operation is decided by two dedicated lines set by the DCS board. If normal 
operation mode is selected, the RCU support FPGA firmware modules are accessible 
for the DCS board through a Memory Mapped interface. This section will focus on 
the firmware operation when in normal operation mode, as the other modes are 
covered in section 3.4. 

 
Figure 4-8: Block diagram showing the RCU support FPGA firmware 

The Configuration Controller performs the main tasks of the RCU support FPGA. 
The Power Up Detect Module is responsible for starting an initial configuration of the 
RCU main FPGA at power up. The two memories are included so that the DCS board 
can access the read back data from the Flash Memory Device and the selectMAP 
interface for more thorough debugging. Internally they are not used. The Address 
Generator generates read addresses for the Flash Memory Device. To save resources, 
the 9 least significant bits of the Address Generator are used as the write address for 
the internal memories when controlled by internal logic. The selectMAP interface 
controller makes the atomic commands supported by the selectMAP interface 
available for the DCS board. The selectMAP interface implements the Xilinx 
selectMAP bus protocol when in normal operation mode.  
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An initial configuration command can be issued either from the DCS board or on 
power up. Then the Xilinx will be configured with the initial configuration file stored 
on the Flash Memory Device. Scrubbing is done by issuing a command from the 
DCS board. The scrub-cycle can run a given number of times or infinitely until an 
abort is issued. Frame by frame readback, verification and correction can be done in 
two ways: The normal mode is to loop through all frames stored on the Flash 
Memory Device and correct the Xilinx if needed continuously until abort, or a given 
number of times. Additionally it is also possible to step through one frame at the time 
by command from the DCS board, and then read the contents of the memories. This 
will make it possible to pinpoint the exact bit that has been flipped. Even if it is not 
foreseen to be used on the RCU, it offers a good tool giving highly detailed 
information when running the system in irradiation tests.  

4.4.4 Registers 

The memory mapped slave on the RCU support FPGA will decode the address/data 
set up by the DCS board when the registers in Table D-15 are addressed. No registers 
are wider than 16 bits since the number of data lines going from the DCS board to the 
RCU support FPGA are limited to 16. It was decided that this was sufficient for the 
RCU support FPGA when the RCU Motherboard was designed, as there are not 
enough pins on the Actel ProASICplus APA075 FPGA to support the full 32 bit data 
width. 

4.4.5 Available Commands 

The normal operation mode is command based. This implies that all internal logic is 
controlled by the two command registers that are available for the DCS board. In 
addition an input data register is used as a configuration register for some of the 
commands. The main command register (Table D-16) is used for executing the main 
tasks of the RCU support FPGA, which includes clearing of error and status registers 
internally in the RCU support FPGA and the different configuration options as 
discussed in section 4.4.1. The selectMAP command register (Table D-17) is used for 
executing atomic tasks on the selectMAP bus, for instance reading and writing 2x8 
bits or sending a selectMAP abort command. 
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4.4.6 Configuration Controller 
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Figure 4-9: Simplified schematic drawing showing the Configuration 
Controller of the RCU support FPGA. 

A simplified sketch of the configuration controller is shown in Figure 4-9. The 
Controller State Machine controls the execution of the main tasks: Initial 
configuration, scrubbing and frame by frame readback, verification and correction. In 
addition, this module sets the error and status registers and controls the specific Flash 
interface signals to read data from the Flash Memory Device. A flowchart showing 
the principles of the configuration controller state machine is given in Figure 4-10. 
Depending on which task that is executed, three main paths are followed. For all 
tasks a dedicated counter is counting the number of cycles an operation has been 
executed. For scrubbing and initial configuration, the number of cycles is defined to 
be the number of times the file has been written. For initial configuration this will 
never be more than one, as it makes no sense running initial configuration 
continuously. For frame by frame readback, verification and correction, the number 
of cycles is defined to be the number of times all frames stored in the Flash Memory 
Device has been read, verified and overwritten in case of an error. If scrubbing or 
frame by frame readback, verification and correction are ended by an abort from the 
DCS board, the ongoing cycle will always finish before the task is stopped. 

The Address Generator, that generates the addresses for the Flash Memory Device 
and the internal memories, is controlled by the Configuration Controller. The pointer 
addresses will be loaded when a new command has been received, or when starting a 
new cycle. The reason for reloading the pointer address and hence again reading all 
the information from the info space on the Flash Memory Device at each new cycle, 
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is to refresh these registers prior to using this information. This is done in case 
registers of the RCU support FPGA have experienced SEUs.  

 
Figure 4-10: Simplified flowchart of the configuration controller. Three 
possible paths can be followed in the flowchart: To the right is the frame by 
frame readback/verification, in the middle is the scrubbing and to the left is 
the initial configuration.  
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If differences are found when reading back frames and comparing them, the 
corrupted frame is reconfigured and the frame number of the corrupted frame is 
stored. The error checking is done by XORing the 16 bit vector from the Flash 
Memory Device to the 16 bit vector from the Xilinx selectMAP. If the result is not 
equal to 0, the total number of differences is found using a pipelined structure 
counting the number of ‘1’s in 4 bits per clock cycle by the use of a LUT. The 
number of errors is then added to the frame by frame error counter. A signal – SEU 
error – flags if an SEU has been found in the current frame and this is made available 
to the DCS board and the RCU main FPGA. It is cleared after the erroneous frame 
has been corrected.  

A frame counter keeps track of which frame is being read, counting down from the 
total number of frames as stored on the Flash Memory Device. If an error has 
occurred in one of the frames, the frame number is saved to a register. This means 
that the latest frame with error is always stored and can be read by the DCS board. 
This number is not the frame address itself, but the frame number as given by the 
sequence of frames stored on the Flash Memory Device.  

4.4.7 Power Up Detection 

As the RCU Motherboard does not host an external Power Up Detection component, 
a simple algorithm has been designed on the RCU support FPGA to check if the RCU 
Motherboard is properly powered. In that case it tries to initiate an initial 
configuration from the Flash Memory Device. This means that if the Flash Memory 
Device is properly configured with an initial configuration file, the RCU main FPGA 
will be alive on power up.  

As the state of the FPGAs and the Flash Memory Device on the RCU Motherboard is 
uncertain in the power up phase, it is foreseen that the Power Up Detection Module 
might try to program the RCU main FPGA a couple of times without succeeding. If 
such failure arises, the error registers will get cleared and the Power Up Detection 
Module will try again until it succeeds, or until a stop power up code is written from 
the DCS board. This is designed using a small state machine that in idle state checks 
the state of the done, busy and init_b from the Xilinx selectMAP interface and the 
RynBy from the Flash Memory Device. When all signals except done are high the 
RCU is expected to be powered, i.e. the Xilinx is ready to be configured. Done is low 
when there is no design loaded in the Xilinx FPGA. If the done goes high, the device 
is successfully configured and the state machine in charge of the power up detection 
will never leave idle state. Additionally, the state machine is always checking the 
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value of last state to prevent erroneous behaviour in case the state machine powers up 
in a state different to idle. 

4.4.8  SelectMAP interface Implementation 

The selectMAP interface implements the communication with the selectMAP bus on 
the Xilinx when operating in memory mapped mode. It is operating the selectMAP 
bus in slave selectMAP mode (Figure 4-5). The incoming data are being bit flipped 
byte by byte as the most significant bit on the selectMAP bus is defined to be bit 0. 
The selectMAP interface is an 8 bit interface, but it is handling 16 bits at a time 
internally. This is done for consistency since the width of interface to the Flash 
Memory Device is 16 bits, and so is the width of the DCS bus to the RCU support 
FPGA. The selectMAP interface is able to do atomic commands like: 

• Read – 2 x 8 bits are read from the Xilinx selectMAP bus, storing the data in a 
big endian 16 bit word.  

• Write – 2 x 8 bits are written to the Xilinx selectMAP bus (16 bit word input – 
big endian format). 

• Init Xilinx – Prog_b line is pulled low for 400 ns, hence telling the Xilinx to 
clear its configuration memory.  

• Startup Xilinx – A command that is only needed when doing initial 
configuration. The startup command lets the cclk run continuously for 3200 ns, 
which is more than enough for a startup procedure.  

• Abort ongoing procedure – The abort is initialised during reading or writing 
by inverting rdwr_b line while cs_b is low and the cclk is running. It can be 
done if the selectMAP bus has entered an illegal state.  

The speed of the interface is by design choice decided to be slower than the 
maximum speed. This is done since it anyway takes at least 4 clks to read data from 
the Flash Memory Device.  

The selectMAP interface can be controlled either by the Configuration Controller or 
by the selectMAP Control Module. The latter interprets all commands being written 
to the selectMAP command register (Table D-17) and by using a simple state 
machine executes them towards the selectMAP interface. Prior to finding out how to 
split the original programming file into individual frame files, the selectMAP control 
was added so that complete frames could be read back to the DCS board and stored in 
separate files. These files were then to be used as the answer book on the Flash 
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Memory Device. An additional important point is that at the time of software 
implementation of the selectMAP interface on the DCS board was not very 
sophisticated and did not support frame read operations. Eventually, the direct 
operation of the selectMAP interface has turned to be very handy in normal operation 
of the system as well, and have been decided to be kept as is. 

4.4.9 Radiation Tolerance Measures 

The purpose of the RCU support FPGA is to increase the radiation tolerance of the 
RCU main FPGA by correcting any error occurring in the configuration memory. It 
has been through extensive irradiation testing[7, 8]. These tests have not been able to 
detect any faulty behaviour at all until the device broke down after having received 
the dose equivalent to 10 ALICE lifetimes. This has proven that the device itself is 
radiation tolerant within the limits given by the environment, but it still does not 
prevent the need of thinking mitigation techniques in design space, since these 
registers are not Flash based.  

The implemented design uses 93.4% of the available logic blocks of the FPGA 
without SEU protection logic, and the estimated possible clock frequency is 40.870 
MHz, which is at the limit of what is acceptable. On the other hand, there are not 
many registers that hold static information of any importance. For instance, all 
internal registers storing the file information data, used for correct access of the RCU 
Flash Device, are updated frequently. This implies that any SEU in the register will 
be cleared prior to using this information. And since the state machines have been 
designed as safe one-hot state machines, an error in them will most probably only 
cause the design to go to idle and not influence the operation of the RCU main 
FPGA. 

4.5 Integration with the Fee DCS 

The RCU support FPGA solution has been integrated in the overall Fee DCS, and a 
special software device has been written to control the RCU Flash Memory Device 
and the operation of the RCU support FPGA firmware[25]. The software makes it 
possible to control the reconfiguration solution from a PVSS panel (Figure 4-11), 
additionally to receiving information on the status of the reconfiguration operation. 
The blue colour in the figure means that the given RCU has been configured, while 
the white colour is undefined, meaning that the RCU is most probably not powered 
when this screenshot has been taken. In addition a green colour would mean that 
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scrubbing or frame by frame readback, verification and correction is ongoing. Red 
would indicate error. The PVSS panel as shown in the figure is still under 
development. 

 
Figure 4-11: PVSS panel for operation of RCU support FPGA for TPC (by 
ALICE TPC DCS group - C. Lippmann21) 

4.6 Active Partial Reconfiguration on other Devices 

The solution developed for Active Partial Reconfiguration has been suggested 
adapted for use on the TRU and the Trigger-OR. The TRU has the same hardware 
implementation with a support FPGA and a Flash Memory Device. As the support 
FPGA on the TRU is connected to the FC bus, the memory mapped interface and the 
mode wrapper must be removed, and an FC bus slave added instead. In addition a 
Flash interface that offers the possibility to do write operations must be added. The 
problem with these adaptations is the size of the support FPGA. There is most likely 
                                              
21 Christian Lippman: Christian.Lippmann@cern.ch 
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not space on the device to host the add-ons, and even not space on the Flash Memory 
Device to host all the programming files. Hence a stripped down version must be 
designed, where for instance only initial configuration and scrubbing could be 
performed. Today, a Xilinx programming ROM is used on the TRU. This device 
exists in parallel to the Reconfiguration Network. The programming ROM needs to 
be updated by JTAG, i.e. one has to be physically present to do the task. Even if 
frame by frame readback, verification and correction may not be possible to perform 
by the Reconfiguration Network, adapting a lightweight version of the solution for 
Active Partial Reconfiguration would be wise even if only to make it possible to 
update the firmware on the TRU whenever needed. 

The Trigger-OR does not have a Reconfiguration Network, but Active Partial 
Reconfiguration might be executed by the DCS board in parallel with the normal 
register transactions. 

4.7 Effectivity of the Active Partial Reconfiguration 

According to [33] a rule of thumb is to have a scrub rate at least a magnitude higher 
than the SEU rate. Based on simulations on the radiation environment for TPC and 
results from irradiation tests of the Xilinx Virtex-II Pro device, the approximate SEU 
rate for the RCU main FPGA is 3.0 ⋅ 10-5 Hz, or approximately 0.5 SEU per RCU in 
a 4 hour run period22. As seen by the measurements give in Table 4-1, the frequency 
of the error correction scheme is approximately 10000 times faster than what is 
needed according to [33]. It is important to emphasize that the simulation done of the 
radiation environment gives results with quite high uncertainty, so the actual SEU 
rate might be higher than calculated, but not to an extent that will matter. It is also 
interesting to see that the scrubbing will correct an error twice as fast as when using 
frame by frame readback, verification and correction. The drawback of this method is 
that one is completely blind when it comes to number of SEUs experienced by the 
FPGA.  

In proton – proton collisions, the mean time between events is approximately 1 ms 
and the detection time of an event is approximately 90 μs. This means that around 
135 events are read out during the time it takes to read all and check all the 

                                              
22 Calculated by Ketil Røed (ketil.roed@ift.uib.no). Yet unpublished. 
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configuration frames in the Xilinx. One SEU is enough to generate a functional error 
in the design, for instance if it occurs in a LUT configuration of the logic related to 
the readout. This implies that if the occurring SEU leads to a functional error, this 
functional error is present for up to 135 events.  

Operation  Time  Frequency if run continously 
Initial Configuration  ~ 113 ms - 
Scrubbing ~ 77 ms ~ 13 Hz 
Read one frame ~ 163 μs - 
Write one frame ~ 180 μs  - 
Read all frames (no error) ~ 150 ms ~ 6.6 Hz 

Table 4-1: Measured times for the different operations. Note that the time of 
the scrubbing is dependent on the design, as the scrubbing file is 
compressed. The time given is with a special design used for irradiation 
tests. 

If the RCU main FPGA firmware is not implementing any standard mitigation 
techniques such as for instance TMR, this functional error can also stay put even if 
the cause of the error is removed. If such a functional error occurs for instance in a 
state machine, this can cause the state machine into enter an illegal state. If the state 
machine is implemented as a safe state machine, e.g. the state machine goes to idle if 
an illegal state is detected, the next logic can wait for input from this failing state 
machine that never arrives. If the state machine is not safe/one-hot, it might jump to a 
legal state when it is not supposed to, which is even worse. The final consequence of 
this can be a total hang-up of the logic – causing a need of a system reset.  

When designing the RCU main FPGA firmware, a good idea would be to constraint 
the allocation of the Readout Node and the Control Node into separate major frames. 
This will give the DCS a possibility to evaluate in which node the SEU has occurred, 
and if it is of any concern for the data readout process. An SEU leading to a 
functional error in the Control Node is far less critical than likewise in the Readout 
Node.  

The conclusion is that Active Partial Reconfiguration is very effective in correcting 
SEUs occurring in the configuration memory of the Xilinx, but it does not vaccinate 
the FPGA against them. The chance of these SEUs generating functional errors in the 
design is decided by several factors: 

• The amount of logic utilized by the design. An SEU in an unused area of the 
chip will not do any harm to the operation of the design. 

• The dead time of different parts of the logic. The functional error can be 
corrected while the logic is in an idle state. 

• Implementation of mitigation techniques in the design. 
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The last point is the only point that is possible to fully control, and by adding for 
instance TMR on the data path in the RCU main FPGA design, this would 
significantly improve the radiation tolerance of the design as discussed in section 6.3 
and in Chapter 7.  
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Chapter 5  
 
 
Processing of Trigger Information 

As the major part of the work concerning trigger and data path presented in this 
thesis is related to the trigger reception, this will be described in detail. The triggers 
are essential in ALICE to select events of interest, and this chapter describes the 
reception and handling of triggers and trigger information in the Fee and the 
BusyBox. The distribution of the triggers to the FECs done by the RCU is discussed, 
and a short overview of the data readout process is given. How the trigger receiving 
logic is integrated in the BusyBox is presented at the end.  

5.1 System Requirements and Overview 

The purpose of the ALICE experiment is to record high multiplicity events. The 
event rate for Pb–Pb collisions at the LHC maximum luminosity of 1027 cm−2s−1 will 
be about 8000 minimum bias collisions per second. This low interaction rate makes it 
possible for ALICE to use slow but high granularity detectors, such as the TPC. A 
trigger based data readout system is designed to cope with complicated events and a 
detector set that varies in both sensitive period and readout time. There are two major 
types of triggers in ALICE; the triggers generated by the TTC system and the High 
Level Trigger. The first reduces the overall data rate to about 25 GB/s when 
considering the Pb – Pb events within 10% centrality, while only 1.25 GB/s is stored 
to disk after the fast online data analysis provided by HLT.  

In the PHOS detector, an L0 trigger from the CTP [10] tells the Fee to start to buffer 
data. The TPC, which is a much slower detector, will start to buffer data on arrival of 
the L1a trigger. The CTP sends messages that can be decoded by the Fee into L2a 
triggers with accompanied information. At the arrival of an L2a trigger the Readout 
Node in the RCU main FPGA (Figure 3-8) will ship the data to the DAQ system. The 
Fee have the ability to buffer 4 or 8 events in the ALTRO depending on the number 
of samples configured. So if the DAQ system is busy, the event will be shipped 
whenever possible. The readout can be done in two ways: normal readout or sparse 
readout. The first will read all channels that connected to one RCU one by one and 
ship the data to the DAQ system, the latter enables the possibility to skip readout of 
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empty channels. Then the Board Controller builds a hitmap memory that lists only 
non-empty channels. In parallel with the Fee the BusyBox informs the TTC system 
when the Fee can not accept more triggers. The Trigger Receiver Module that 
decodes the trigger information from the CTP is common for the RCU and for the 
BusyBox. 

Every single RCU must be able to handle configuration and perform a readout of all 
the channels connected to the readout partition. On the RCU, this has been 
implemented as seen to the right in Figure 3-8. The data flow is from the ALTROs of 
the FECs, via the ALTRO Interface Module, to the Data Assembler that adds the 
Common Data Header (CDH) from the Trigger Receiver Module. The data is then 
shipped to the DAQ system via the SIU interface. The ALTRO bus, which is a multi 
drop bus that connects the FECs to the RCU, consists of two branches. One of the 
core elements concerning the readout process is the Readout Node in the RCU main 
FPGA. The Readout Node consists of the following modules: 

• Trigger Receiver Module: Decodes the trigger sequences being submitted 
from the Trigger System. This is covered in section 5.2.4. 

• Event Manager: Selects the trigger source depending on configuration. Either 
TTCrx trigger, software test Trigger-OR hardware test trigger. 

• ALTRO Interface Module: Implements the bus master of the ALTRO bus that 
communicates with all the slaves of the FECs. Most importantly it is in charge 
of the data readout functionality at the arrival of an L2a trigger. In the first 
phase, data is moved from the ALTRO buffers to the internal data memories. 
In the second phase, the data is pushed from the data memory to the RORC via 
the DDL by the Data Assembler. 

• Data Assembler: Reads data from the Data Memories and combines it with the 
formatted header information from the Trigger Receiver Module and 
additional information generated by the Readout Node itself (e.g. block length 
and status information), and builds a structured data block according to the 
ALICE data format. 

• SIU Interface: Implements the Fee-SIU bus protocol to transmit and receive 
information from the DAQ system. 

• Instruction Sequencer: Executes ALTRO/Board Controller register 
instructions towards the ALTRO interface given in the Instruction Memory, 
and is mainly used for configuration of the FECs. 
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• Result Unit: Holds the results and status information of the executed 
instructions.  

5.2 Trigger Reception and Handling in TPC & PHOS Fee 

5.2.1 Introduction 

The system clock and triggers with associated data are received by the DCS board 
from the TTC system via an optical cable interface. The receiver of the data is the 
TTCrx[34] ASIC. The TTCrx chip is directly connected to the onboard FPGA on the 
DCS board. In addition, two lines – channel A and channel B, are routed to the FPGA 
on the RCU Motherboard (Figure 4-6). The channel A is used for distributing the 
triggers itself, while the data on channel B is the accompanied raw data. 

The natural choice would be to use the TTCrx to decode the trigger data, and read 
and control this with the DCS board FPGA[35]. But if a radiation related functional 
error occurs in the DCS board FPGA, valid events might be lost and the run may be 
aborted because of missing event fragments in the DAQ system. To prevent this, the 
trigger handling is moved to the RCU main FPGA, where this task is performed by a 
Trigger Receiver Module. Many functions in this module are a duplication of 
functions already existing in the TTCrx. The Trigger Receiver Module decodes serial 
channel B data and L0/L1a triggers coming on channel A. In this way, all sensitive 
data is decoded and stored in the FPGA of the RCU Motherboard on which measures 
have been developed to prevent failures due to radioactive effects (see Chapter 4). 
There are several other advantages to this solution. The speed of the system increases 
since the information is decoded where it is used, and does not need to be transferred 
from the DCS FPGA to the RCU main FPGA. The space on the Altera Excalibur 
device is also limited and receiving and decoding triggers is a quite area consuming 
task. In addition the TTCrx chip does not support decoding of L0 trigger submitted 
on channel A, since this is a change in the specification done after the TTCrx was 
designed. 

5.2.2 Functional Requirements 

In ALICE, the trigger is essential for the data readout process, and the trigger 
receiving logic must be able to do the following: 
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• Decode all the information being submitted from the TTC system, on both 
channel A and channel B. The decoded information is among other things used 
to buffer data, start a readout sequence and identify an event.  

• Detect transmission errors and connection errors related to the optical 
connection to the LTU and flag these to the DCS.  

• Be able to operate correctly in the Fee of four different sub-detectors that all 
are implemented with the RCU, namely TPC, PHOS, EMCal and FMD, as 
well as for the BusyBox in the same sub-detector systems.  

• Always generate the CDH [36] correctly so that no event fragments are 
missing when the DAQ system is reconstructing the events and aborts the run. 

The Trigger Receiver Module must decode the defined legal trigger sequences for all 
sub-detectors of which it will be used. The legal trigger sequences are defined in 
Table 5-1. There are three different types of trigger sequences that must be supported: 
physics triggers, software triggers and calibration triggers. The software triggers are 
used for information from the TTC system to the Fee, while the calibration triggers 
are for calibration purposes. Only the latter use the pre-pulse. For TPC, the 
calibration triggers are sent as normal software triggers, and of the four discussed 
sub-detectors only FMD is using the special calibration trigger sequences23.  

Legal Trigger Sequences for TPC, PHOS, FMD* and EMCal 
L0 – (L1r) 
L0 – L1a – L1a message – L2a message 
L0 – L1a – L1a message – L2r message 
pre-pulse* 
pre-pulse – L0* 
pre-pulse – L0 – L1a – L1a message – L2a message* 
pre-pulse – L0 – L1a – L1a message – L2r message* 

Table 5-1: Table showing legal trigger sequences for TPC, PHOS, FMD 
and EMCal. The sequences marked with the star are only valid for FMD. 

A feature called Region of Interest is defined but currently not used. The Region of 
Interest will tell the receiving Readout Node if it is within a region where interesting 
data might be found for a given sub-detector. If it is included in the future, it will be 
submitted between the L1a message and the L2 message on the Serial Channel B. 
The triggers and messages arrive with specified latencies as given in Table 5-2. The 
pre-pulse comes in the gap prior to the bunchcrossing time (BC0), and does not have 

                                              
23 The PHOS led calibration system will also make use of the pre-pulse, but it is not decided at the time of writing if this 
system shall use the trigger receiver module directly. 
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a specified latency. The receiving logic needs to control that the sequence and timing 
is correct, and flag any error related to this. All data transmitted on the serial channel 
B is hamming coded and needs to be decoded by the receiving logic. If several 
hamming decoding errors occur, it is an indication of a problem with the optical line 
connecting transmitting the data from the LTU to the Fee. This must be reported and 
handled by the DCS. 

Trigger Latency with respect of BC0 
L0 1.2 μs 
L1a 6.5 μs 
L2a/L2r message 88 μs (Range 80 μs – 500 μs)  

Table 5-2: Legal timing of the trigger sequences. BC0 is the bunchcrossing 
leading to the collision.  

Effort has been put in to making the Trigger Receiver Module as generic as possible 
to ease future upgrades. This might be needed, as the information being transmitted 
by the CTP is likely to be extended. 

5.2.3 Input from the Trigger System 

 Channel A 

 
Figure 5-1: L0 and L1a trigger distribution on Channel A. The clock is the 
system clock that is directly dependent on the bunchcrossing frequency in 
LHC. 

The Channel A transmits the triggers. It is an LVDS output from the TTCrx on the 
DCS board. The Channel A is synchronous with the clock, and a level 0 trigger is 
defined to have a length of 1 clk. A level 1 accept trigger is of length 2 clks, see 
Figure 5-1.  

 Channel B 
Data transmitted on the serial channel B can be divided into two types of messages: 
Individually addressed messages and broadcast messages. The default state of the 
serial channel B is high, so a zero on the line indicates a start condition. The next bit 
after that is the frame type (FMT) bit that indicates if it an individual addressed 
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message or a broadcast message. Both types of messages are hamming encoded. The 
hamming encoding is given in Table D-32 and Table D-33. 

 Broadcast Messages 
The format of the broadcast message address is given in Table D-23. For a broadcast 
message, 8 bits of command/data follow before 5 bits of hamming code. The 
hamming code spans over the command/data bits. The command/data is split into a 
user message, a system message and two single bits for eventcount reset and 
bunchcount reset as given in Table D-24. Any bit set to one in the user message or 
system message is decoded as a pre-pulse. More system/user messages might be 
added in the future. The eventcount reset is not used in ALICE, while the bunchcount 
reset is important, as this resets the local bunchcounter that is used for event 
identification. 

 Individually Addressed Messages 
The format of the individually addressed message is shown in Table D-25. Even if 
the name suggests that this message is addressed only to specified TTCrx chips, this 
is not the case. The TTC system always operates in broadcast mode, so all the address 
bits are always 0. The data is split into 4 bits of address and 12 bits of data. The 
individually addressed message is also hamming coded, and the hamming code spans 
over the 32 bits shaded in Table D-25. Information transmitted by individually 
addressed messages is for instance the L1 header/data and the L2a header/data. The 
complete list is given in Table D-25. The trigger receiving logic must decode all 
defined addresses from 0x1 – 0x8 and it must be possible to upgrade for possible 
future use of the remaining, unused addresses. For the L1a data, L2a data and the RoI 
data, the content of the data word is decided by order of the data words, i.e. which 
word in the received message it is. The data following the Fee reset is unimportant. 

The individually addressed messages contains information defining if it is a physics 
trigger sequence, software trigger sequence or a calibration trigger sequence. For 
software triggers the information concerning the participating sub-detectors are 
submitted and the type of software trigger is set. Currently only start of run and end 
of run software trigger sequences are defined. The bunchcrossing ID and the orbit ID 
together gives a unique event ID. The bunchcrossing is the number of the particle-
bunch involved in the collision. The Orbit ID is the number of times all bunches has 
travelled one orbit in the LHC ring. For physics triggers the trigger class is submitted. 
The trigger class is defined by the parameters required to make up a trigger selection: 
trigger cluster, the set of trigger inputs, past/future protection requirements and a few 
other parameters. The definition of the messages is given in Table D-27, Table D-28, 
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Table D-29 and Table D-30. The abbreviations used in the tables are given in Table 
D-31. 

Not all information received from the TTC system is interesting for the Fee, but are 
submitted to the DAQ system as part of the CDH and used for correct event 
reconstruction (for instance Trigger Class).  

5.2.4 Fee Trigger Receiver Overview 

 
Figure 5-2: Schematic overview of the Trigger Receiver on the Fee. 

A schematic overview of the Trigger Receiver is shown in Figure 5-2. The Trigger 
Receiver is possible to synthesize in two modes by setting a generic variable: release 
mode and debug mode. In debug mode, a test pattern generator is added together with 
a number of additional debug registers. The test pattern generator generates a 
predefined trigger sequence free of errors for debug purposes. In release mode the test 
pattern generator is removed, and the Channel A input is fed directly to the Channel 
A decoder. The data of the Channel B is fed to a deserializer and a hamming decoder. 
From the hamming decoder the signal is split into broadcast messages and individual 
addressed messages that are decoded by two dedicated modules. The sequence 
validator verifies the sequence of triggers and messages, and when a complete 
sequence has been received, the data is formatted in the CDH version 2 format and 
stored in a FIFO together with an event information word and an event error word. 
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The FIFO has optional parity encoding decided at compile time. All events, including 
software event, calibration events, and even erroneous events are stored by default.  

In total, 14 events can be stored in the FIFO24, but it is possible to constrain the FIFO 
to only store 8 events since this is the maximum depth of the multi event buffer in the 
ALTROs. If the readout logic reports to the trigger receiver that the multi event 
buffers are full or that the DDL is not ready to receive data, the trigger receiver can 
be configured to mask any additional incoming trigger sequences.  

The Trigger Receiver Module handles errors that are related to message reception, 
illegal ordering of triggers/messages as well as timeout conditions. The errors are 
reported in the error and status words in the CDH FIFO. Additionally, counters count 
the number of message decoding errors, sequence related errors and single and 
double hamming errors. These counter values are accessible for the DCS. 

5.2.5 Channel A decoding 

A 3 bit shift register is used to decode the L0 and the L1a triggers. The L0 trigger is a 
single clock pulse which is reflected in the shift register as the pattern “010”. The L1a 
trigger is two clock pulses in length, which is recognized as “011” in the shift 
register.  

The shift register is sampled with falling edge of the clock. This ensures that the 
Channel A signal is stable when the data is sampled. The shift register pattern test is 
done on the rising edge of the clock. 

5.2.6  Channel B decoding 

The serial Channel B is sampled on falling edge of the clock to make sure that the 
signal is stable when analyzing it. When a start condition has been seen (Channel B 
goes from high to low), the FMT bit is analyzed and then the subsequent data is 
shifted in a shift register. To keep track of how many bits to shift, the shift register is 
initialized with a ‘1’ in the least significant bit, and a complete message is received 
when this bit is recognized in bit location equal to message length + 1. An 
individually addressed message has a total length of 39 (32 data bits and 7 hamming 
bits), while a broadcast message has a total length of 13 (8 data bits and 5 hamming 

                                              
24 This has to do with the predefined sizes of the Xilinx FIFO core modules. 
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bits). The different messages are checked for hamming errors when they have been 
fully received. The hamming decoding is done with combinatorial LUTs to find and 
correct single bit errors. Double bit errors are reported. 

 
Figure 5-3: Principal drawing showing the time windows for the L1a trigger 
and the L1a/L2a messages. The boundary L1a is given in yellow and the 
L1r is shown issued after a predefined timeout period. For L2a, all 
messages must be received within the time window for the trigger to be 
valid. 

The broadcast messages are decoded into three single bit outputs: pre-pulse, 
eventcounter reset and bunchcounter reset, as given by Table D-24. The individually 
addressed messages are decoded into L1a, L2a, L2r and RoI messages (Table D-27, 
Table D-28, Table D-29 and Table D-30) and store the values in arrays of registers 
available for trigger sequence validation. This is quite area consuming, but since the 
content of the messages is to be verified later in the process, it is desirable to 
implement it like this. As the data is formatted to match the CDH, only information 
that is reported here could be stored. As it would make maintenance of the design 
more difficult, this is not currently done. In addition to the trigger messages, a Fee 
reset command is decoded from the individually addressed messages. This Fee reset 
has no effect on the Trigger Receiver Module, but is forwarded to the rest of the 
logic.  

When decoding the messages, the order of the messages or the content of the data 
transmitted is not validated, but an error situation will be flagged if a message has not 
been completely received, i.e. when one or more of the data words are missing. 
Additionally any other address received than 0x1 – 0x8 will result in an unknown 
address warning.  
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5.2.7 Trigger Sequence Validation 

The trigger sequence validation analyzes the timing and the order of the incoming 
triggers and messages. A principle sketch of the state machine for the sequence 
validation is given in Figure 5-4. A valid trigger sequence is always assumed starting 
with a L0 trigger, even if the pre-pulse precedes the L0 trigger. When validating a 
trigger sequence, the pre-pulse is only considered together with the CIT bit. Verifying 
the validity of a calibration sequence includes testing if the CIT is set when a pre-
pulse has been issued. A valid sequence ends with an L1r, an L2a or an L2r, while a 
sequence ending with an L2 timeout is regarded as a definitive error situation. All of 
these trigger sequences, except for the first that has no accompanied data, can be 
selected to be stored in the FIFO and be sent to the DAQ system with or without 
payload. 

When an L0 trigger is successfully decoded, all intermediate errors and status 
registers are cleared, and a counter is started that sets up legal time windows for the 
reception of the L1a trigger and the messages. See Figure 5-3. The borders of the 
time windows are configurable. The L1a trigger will always arrive at a defined time 
with respect to the L0 trigger, and hence the valid time window is one clock cycle 
wide. It is possible to set a configurable uncertainty region of up to ±16 clock cycles, 
on which a boundary L1a trigger is reported. If no L1a triggers are received 15 clock 
cycles after the end of the uncertainty region, an L1r is issued and the trigger 
sequence is regarded as a finished and valid L0 sequence. Any L1a triggers outside of 
the legal time window (valid + boundary region) are masked, but still counted and 
reported as a spurious L1a trigger within the ongoing trigger sequence. A trigger 
sequence can also be considered started by as L1a trigger, but then a missing L0 
trigger is reported in the event error word.  

The state Receive All Messages is a wait state that waits until all messages have been 
received or the L2 time window is closed. As the L1a messages and the L2 messages 
may blend, the content of the L1a message is not evaluated until the sequence is 
considered to be finished. The time windows for the L1a message and the L2a/L2r 
message are per default set very wide. The L1a message is legal between 1 μs and 
500 μs, while the L2 message is legal between 80 μs and 500 μs. These limits are 
configurable. An L2 timeout occurs if the L2a/L2r message has not been completely 
received by the end of the time window. An L1a message missing is reported if the 
same situation occurs for the L1a message. RoI is by default not considered and the 
decoding and time window are disabled, but can be enabled if needed. When a 
complete L2a/L2r message has been received, an L2a trigger or an L2r trigger is 
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generated, depending on the type of message received. The L2a and L2r triggers will 
be generated even if an error condition has occurred during the trigger sequence, as 
long as the severity of the error condition does not prohibit this.  

 
Figure 5-4: State machine for the validation of the trigger sequences. 

Immidiately after the L2a/L2r trigger is generated, the content of the messages is 
verified and decoded. From the content and type of L2 trigger, the start-of-run event 
and end-of-run event are generated as described in [37]. The end-of-run event is 
defined so all the programs handling the data readout on the DAQ LDC can be 
stopped in a coordinated and controlled manner, preventing failures and incomplete 
events at the end of the run. The start of run event is sent prior to configuration of the 
system so that a quick check of the data flow chain is performed for all the Readout 
Nodes. 



116 

5.2.8 Output to Internal Logic 
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Figure 5-5: Structure of the CDH FIFO.  

At the arrival of an L2a/L2r trigger or an L2 timeout, the data from the recently 
finished trigger sequence is stored in the CDH FIFO. The trigger information 
received for one event is multiplexed into the FIFO, as shown in Figure 5-5. 
Altogether 9 words are stored in the FIFO per event: status information (Table D-20), 
error/warning information (Table D-21), and the CDH. The CDH is always 
transmitted prior to the event data to the DAQ system. As the content of the CDH is 
based entirely on information received from the TTC system, the trigger receiving 
logic formats its output as defined by the CDH. Word 0 of the CDH gives the data 
size. In all sub-detectors using the RCU, this word is simply set to zero, since the 
length of the payload is reported in the event trailer word instead. This information is 
not ready until the actual data has been read out, and then the CDH has already been 
sent to the DAQ. The content of the CDH FIFO for one single event is given in Table 
5-3. The number of buffered events is visible to the other modules in the Readout 
Node. Depending on configuration, it is incremented when the L2a/L2r trigger or L2 
timeout is received by the FIFO wrapper, giving as quick access to the data as 
possible. It is decremented when the last word of the event information is read. This 
makes the FIFO operate in a pipelined manner where both read and write is possible 
simultaneously, giving the best possible performance of the logic.  

The event information word tells the Readout Node if the received trigger sequence is 
a physics trigger sequence, software trigger sequence or a calibration trigger 
sequence. It will also report if RoI is enabled, announced, received and if the given 
RCU is within this region25. Additionally, information is given whether the event 
ended with an L2a/L2r trigger or an L2 timeout. This is important if several events 
have already been buffered in the multi event buffers. When then the readout process 
of the given event starts, the event manager can recapture needed details concerning 

                                              
25 Region of Interest is, at the time of writing, not considered to be used and it is not defined how the region of interest data 
should be interpreted. In the trigger receiver logic it is assumed that for TPC, one bit in the 36 bit RoI-word is set for each 
sector in the TPC. No such assumption has been made for PHOS, EMCal and FMD. 
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the buffered event. The include payload flag tells the event handler whether data 
should be sent together with the header to the DAQ system or not. If this flag is zero 
the CDH is transmitted without payload, and the pointer in the multi event buffers is 
only decremented. If this flag is 1 then a full readout process is started. The payload 
flag is set when L0 and L1a triggers have arrived within the legal time windows and 
the trigger sequence ends with a completely received L2a message. Other errors, such 
a spurious triggers and messages or incorrectly received messages, do not matter. The 
phase of the sampling clock at the arrival of the trigger that enables buffering of data 
(L0 for PHOS/EMCal, L1a for TPC/FMD) is also stored in the event information 
word. On the BusyBox these bits are always set to zero, as the BusyBox does not 
include a sampling clock.  

Word Content 
Event Info X”A95” | “00” | Event Information(17:0) 
Event Error X“0” | Event Errors(27:0) 
CDH-word 01 version(7:0) | “000” | CIT | RoC(3:0) | ESR | L1SwC | “00” |  BCID(11:0)  
CDH-word 02 X”00” | OrbitID(23:0)  
CDH-word 03 X”00” | L2Class[47:24] / Detector[23:0]   
CDH-word 04 X“0” | CDH_error/status(15:0) | Local_BCID(11:0) 
CDH-word 05 L2Class[31:0] 
CDH-word 06 RoIdata[3:0] | X”00” | “00” | L2Class[49:32] 
CDH-word 07 RoIdata[35:4] 

Table 5-3: Data stored in the FIFO. First come two words with detailed 
information and status, and then all except the first word of the CDH follow. 

The errors concerning the trigger sequence are reported in the error information word 
as given in Table D-21. The reported hamming errors are important, and are an 
indication of a problem with the optical link from the LTU to the Fee. Several other 
errors will most likely be reported as a consequence of hamming errors. The message 
content errors are a collection of errors that result from erroneous decoding of the 
messages. The consistency between the received data of the L1a message and the L2a 
message (if an L2a message has arrived) is verified, as well as the consistency 
concerning the types of triggers. The received bunchcrossing ID is verified. The 
number of bunches orbiting in the LHC is at all times 3563, and a bunchcrossing ID 
larger than this makes no sense. The other error situations are explained in Table 
D-21. 

The CDH error/status word is generally defined in [36] and cited in Table D-22 
including information how the CDH error/status word is generated in the Readout 
Node. The error and status information given in the first two words are more detailed 
than what is room for in the CDH, and the CDH error/status word is a combination of 
this information. 
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5.2.9 Registers 

The handling and reporting of errors are very important for the trigger reception. All 
errors detected concerning a trigger sequence are reported as part of the event header, 
as described in section 5.2.8. In addition, it is of vital importance that the error and 
status information is available for monitoring by the DCS. The reception of the 
triggers must also be adaptable for possible future changes. For instance, it is 
foreseen that the expected latencies for the triggers and messages might change in the 
future, which is why this can be set as part of the configuration process of the system.  

Table D-18 lists the available registers in the Trigger Receiver Module, of which 
some are for configuration and monitoring, and other strictly for debug purposes, for 
instance the registers that present data concerning the last received event. During 
normal runs, the trigger rate will be far too high to be able to make meaningful use of 
the debug registers. Some of the registers in Table D-18 are labelled debug and are 
only available in the debug version of the Trigger Receiver Module. 

The important configuration registers that the DCS needs to set during configuration 
are the control register and the latency registers that defines the legal time windows 
of the trigger and messages. The definition of the control register is given in Table 
D-19, and the 16 least significant bits are control bits, while the remaining bits give 
status information. This register selects which type of events to be stored in the FIFO. 
By default, all events are chosen for storage. As the L1a message is optional for the 
LTU to send, any error situation regarding L1a message reception can be masked out. 
For backward compatibility, it is possible to assume that channel A only transmits 
L1a triggers26. 

Two command registers exist, one for doing a synchronous soft reset of the module, 
and one for clearing all counters and error/status information registers. The first is 
important in case the DCS needs to reset the data path without resetting the 
configuration of the logic.  

When DCS are monitoring the trigger reception it is of high importance that a 
problem with the transmission is detected as early as possible. If the optical fiber for 
some reason is down, the DCS board automatically switches to a local clock, 
generated by a crystal on the board. The clock enables the DCS to still be able to 

                                              
26 The system was originally defined so that only L1a triggers were transmitted on Channel A, while the L0 was transmitted 
on a dedicated LVDS cable.  
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access the registers on the RCU Motherboard, and the important registers for 
detecting a dead link are the upper part of control register and the different error 
counters. The bunchcounter overflow bit in the control register is set if the 
bunchcounter is not reset by the broadcasted bunchcount reset message. This is the 
first indication of a dead link. If additionally the hamming error counters are zero the 
communication link is most likely broken or not connected. If the hamming error 
counters are counting fast, then it indicates that there is a problem with the 
synchronization between the clock and the Channel B link. Either way, a 
bunchcounter overflow flag must initiate a thorough check of the given RCU. This 
information should be handled by the DCS, making sure that the given RCU is 
removed from the DAQ equipment list until the error has been solved.  

The DCS should also verify that there is coherence between the trigger counters. For 
instance should the number of level 1 triggers and level 2 triggers (accept and reject) 
always be equal during a run when the system is operating normally. The message 
error counter counts all errors related to decoding the messages (bit 5 – 9 in the error 
information word, Table D-21). The sequence error counter counts all errors related 
to sequence and timeouts (bit 10 – 24 in the error information word, Table D-21). 
These counters should be zero during normal operation.  

5.2.10 Adaptions for the BusyBox 

 
Figure 5-6: Wrapper that translates the BusyBox bus protocol to the RCU 
bus protocol.  
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There are two adaptations needed to make the Trigger Receiver Module fit for the 
BusyBox: 1) A bus wrapper that translates the definition of the bus from the internal 
RCU type to BusyBox type, and 2) Removal of the sampling clock phase calculation. 
The width of the external DCS databus is 16 bits for the BusyBux while it is 32 bits 
for the RCU. As the Trigger Receiver Module is originally designed for the RCU, it 
was additionally needed to address the 16 least significant bits and the 16 most 
significant bits of the complete data word separately. This is implemented as shown 
in Figure 5-6. The wrapper shifts the address bits one position to the left and adds a 
new least significant bit to select which part of the data word to read. Additionally the 
RCU bus protocol only has a write enable, while the BusyBox protocol includes a 
module enable and a read not write signal as seen in the figure. The second 
adaptation is done during compile time by setting the appropriate generic variable.  

5.2.11 Radiation Tolerance Measures 

As explained in the previous chapter, the Active Partial Reconfiguration of the RCU 
main FPGA does not vaccinate the logic against SEUs leading to functional errors, 
and to make full use of the Active Partial Reconfiguration, additional mitigation 
techniques are needed. The FIFO is therefore implemented with parity. It was 
originally planned to equip all state machines in the trigger receiver design with 
TMR, but due to the resource usage this was decided not to be implemented in the 
current version. The trigger receiver logic uses approximately 22 % of the logic 
blocks in the RCU main FPGA. This means that a functional error in the 
configuration memory that covers the trigger receiver logic will most probably make 
the readout chain fail. On the other hand, since timeout counters are implemented and 
the status of the Trigger Receiver Module is reset at the start of every trigger 
sequence, the logic will recover itself when the SEU has been corrected. 
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5.3 Trigger Distribution 
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Figure 5-7: Distribution of trigger signals from the Trigger System to the 
ALTROs.  

In the Readout Node of the RCU firmware the decoded trigger is then handled by the 
Event Manager. This module supports three types of triggers: the triggers from the 
Trigger Receiver Module, software generated test triggers and hardware generated 
test triggers via dedicated input connector. The software L0/L1a triggers (depending 
on detector) are generated by issuing a command from either the DAQ system or the 
DCS. For hardware and software generated test triggers, the L2a trigger is then 
generated after a configurable time by the firmware. The Event Manager sends the 
triggers to the ALTRO interface that broadcasts them to the ALTROs on the FECs, 
see Figure 5-7.  

5.4 Data Readout 

5.4.1 The Readout Process 

The readout sequence is extensively discussed in [13], and only a short summary is 
given here. Figure 5-8 shows a flowchart describing the overall readout procedure. 
The very first step is that the system needs to be configured properly. In that lies 
configuring all the ALTROs, configuring the Readout Node, and arming the Readout 
Node to be ready to receive triggers. The configuration also includes setting the 
readout mode, and when an L2a physics trigger arrives, the readout mode is 
evaluated. The readout mode can either be full readout mode or sparse readout mode. 
In full readout mode, all channels of all ALTROs are read out, while in sparse 
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readout mode only the channels that have buffered any data are readout. Sparse 
readout is covered in section 5.4.2. The L0/L1a trigger is broadcasted at arrival from 
the TTC system and makes the ALTROs start the buffering of data, while the L2a 
trigger can be broadcasted later than arrival time in case the Readout Node is already 
busy with a readout operation. The data is then waiting in the multi event buffer of 
the ALTRO until the Readout Node and the DDL is ready.  

After the readout mode has been evaluated, it is checked whether the readout list 
memory is to be used or not. The readout list memory contains the order of which to 
read the channels by storing the address of each given channel in a specific order. In 
this way, it is possible to read the channels in the order that matches the physical 
layout of the detector; a design feature that improves the event reconstruction. The 
downside is that the data readout process might go slightly slower as it is not possible 
to take advantage of the readout network architecture by reading from both branches 
concurrently. If the readout list memory is decided not to be used, the readout is done 
in a way that optimizes the readout time.  

After that the active channel list is checked. The active channel list tells the Readout 
Node whether the addressed channel should be read out or not. If the addressed 
channel is selected for readout, the availability of the data memories is checked. 
There are two data memories per branch, each able to store data generated by one 
single ALTRO channel. This enables the Readout Node to store data into one 
memory while simultaneously data is pushed on the DDL from the other memory. If 
the data memories are full, the system goes into a wait state. If the memories are free 
the Readout Node executes the channel readout command, and stores the result in the 
data memory.  
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Figure 5-8: Flowchart showing the principals of the overall readout 
procedure. 
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5.4.2 Board Controller in the Data Readout Process 

 Introduction 
For both TPC and PHOS, the Board Controller plays a vital role in the readout 
process, as it is a key component in the implementation of sparse readout. 
Additionally, it always monitors the register transactions to the ALTROs to recognize 
the channel readout command. If this is seen it switches the ALTRO bus into readout 
mode, meaning essentially the ALTRO pushes data to the RCU on each clock cycle, 
using all 40 bits available on the bus[14]. 

 TPC Board Controller - ALTRO Testmode 
The ALTROs have serial test outputs that are connected to inputs on the Board 
Controller. These test outputs enable the possibility of reading the ALTRO raw data 
directly from the outputs of the ADCs, i.e. skipping the whole processing chain and 
multi-event buffer in the ALTROs. The ALTRO testmode is discussed in depth in 
[13]. 

 TPC Board Controller - Sparse Readout 
When buffering an event with zero suppression enabled in the ALTROs many 
channels will have no data. This is especially true for proton-proton events that have 
fairly low multiplicity. The amount of data stored can be verified by reading the 
pointer of the ALTRO memory, if the pointer is ≤ 1, no data are stored for that given 
ALTRO channel. This is utilized to support a functionality named sparse readout. 
When doing a sparse readout only the channels that have actually buffered data are 
read out by the RCU and all the empty channels are skipped. This is done by the 
RCU sending a sparse readout command to the Board controller, which then 
immediately isolates the given FEC from the RCU. It becomes the bus master of the 
local ALTRO bus behind the GTL drivers, and scans the event length registers of all 
the ALTRO channels and builds a hitmap. The hitmap contains a 1 if the channel 
contains data and a 0 if the channel does not. When this is finished, the Board 
Controller waits for another command from the RCU that will make the Board 
Controller switch into ALTRO data readout mode. Using the full 40 bit buswidth it 
then transmits the hitmap to the RCU as though it was normal data from an ALTRO 
channel. The RCU then uses this hitmap information to select the channels to be read 
out. The sparse readout is discussed in depth in [13]. 
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 PHOS Board Controller - Sparse Readout 
The Event Length Manager (see Figure 3-11) is the actual module implementing the 
sparse readout functionality as described in the previous chapter for the TPC. The 
Event Length Manager listens for two commands from the register block that are 
forwarded from the RCU: Scan Eventlength and Eventlength Readout. The first 
command starts to read the event length register of all the ALTRO channels. When 
the hitmap register is filled, it waits for the Eventlength Readout command on which 
it pushes the data to the RCU. 

The sparse readout functionality has been modified only to match the different 
physical requirements of the PHOS FEC opposed to the TPC FEC. The PHOS FEC 
has only 4 ALTROS with address 0, 2, 3 and 4, where the TPC has 8 ALTROs with 
address from 0 – 7. The bit positions in the hitmap for the “missing” PHOS ALTROs 
are filled with zeros to keep the same structure of the hitmap register as for TPC. The 
pushing of the data uses a gated version of the rdoclk (system clock) as data strobe as 
this is done in the TPC version. Figure 5-9 shows how the gated clock is 
implemented in the Board Controller. Altera do not recommend to use gated clocks in 
an FPGA [38] since it is not a synchronous element. If used, it should only be in the 
cases where the target application requires power reduction. This is not the case for 
the Board Controller. The reason for using it here is to generate the 40 MHz data 
strobe from the 40 MHz system clock. Phase locked loops can not be used since the 
chosen Altera FPGA does not support this. The solution for gating the clock in the 
Board Controller follows the recommendation given in [38], and since it has been 
tested and verified working for TPC [13], the design is kept as is. 

 
Figure 5-9: Excerpt from Altera Quartus RTL viewer of the logic driving the 
dstb. Some signal names are added for clarity 

A better solution would be to generate the clock by using a register with an enable 
signal. This would reduce the data strobe frequency from 40 MHz to 20 MHz, but 
since only four 40 bit words of data are pushed, it would not give a considerable 
reduction to the sparse readout efficiency. This solution was not selected since it was 
not known at the time of design whether the RCU would support a data strobe with 
half the speed. 
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5.4.3 Event Building 

The event building is done by the Data Assembler Module, as illustrated by Figure 
5-10. When an L2a trigger initiates a readout, the CDH is read from the CDH FIFO 
in the Trigger Receiver Module via the Event Manager. The CDH is already 
formatted and ready to be pushed out on the DDL. When the 8 words of the CDH 
have been written the data is read from the memories in the ALTRO Interface 
Module, where the data is stored as 40 bits words. More information on the ALTRO 
data format is found in [14]. To be shipped on the DDL, the data must be formatted in 
32 bit words to match the DAQ data format, see Table D-34.  

 
Figure 5-10: Event Data Block. Data sent to the DAQ system is formatted 
with relevant information appended in the header and trailer words.  

The trailer consists of two fixed trailer words and an optional number of words in 
addition to those. The two fixed trailer words define respectively: 1) The payload 
length, which specifies the number of 40-bit data words, and 2) the RCU address and 
the trailer length in 32-bit words. The payload length is the first word of the trailer 
and the RCU address and trailer length is part of the last word. The optional trailer 
words are divided into a parameter code and a parameter. The typical parameters are 
different error registers, readout lists of both branches that contain the bitmap 
defining the cards that actually have been read out, information concerning the 
samples, ALTRO configuration etc. Information of the samples contain the number 
of samples per channel, sampling frequency, and the phase of the level 0 / level 1 
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trigger relative to the sampling clock. More information of the TPC data format is 
found in [39] and in [14]. 

5.5 BusyBox 

5.5.1 Basic Functionality 

The BusyBox is covered in detail in [40], and only a short overview is given here. 
When the BusyBox receives an L0 or an L1a trigger (depending on for which 
detector it is used), it will assert the busy signal and wait for an L2 trigger. If the L2 
trigger is a reject or it does not arrive in time the busy signal will be released. If the 
L2 trigger is an L2a trigger it is assumed that a buffer in the Fee has been occupied. 
The event ID from this trigger sequence is extracted and pushed into a local queue. 
This queue contains the event IDs of the events that are assumed to be somewhere in 
the system. Either they are stored in multi event buffers in the Fee or in the process of 
being transferred to the D-RORCs. In general, if the number of event IDs stored in 
this queue is equal to the total number of available multi-event buffers in the Fee (4 
or 8) the busy signal is not released. To clear an event ID out of the queue it needs to 
be verified that all D-RORCs have received the data for this event. The BusyBox 
requests the latest received event ID from the D-RORCs, and if for some reason a D-
RORC does not reply, the BusyBox will resend the same request. This is important to 
maintain the synchronization of the events between the BusyBox and the individual 
D-RORCs.  

5.5.2 Firmware Architecture 

An overview of the BusyBox is given in Figure 5-11. Surrounding the module given 
in the figure is a top level layer that instantiates Virtex-4 primitives such as IO 
buffers and a Digital Clock Manager for generating the two clocks that are used in the 
design. Most of the modules run on the normal 40 MHz system clock distributed by 
the TTCrx, while the interface to the D-RORCs uses a 200 MHz clock for 
oversampling the asynchronous serial bus protocol. Additionally, since the BusyBox 
is built with two FPGAs, the surrounding logic specifies in which FPGA the general 
BusyBox Module is to be used.  

The DCS bus arbiter and address decoded interfaces the DCS bus and makes the 
internal modules accessible for the DCS board for monitoring and configuration of 
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the BusyBox, which is mostly done via the Control and Status Registers Module that 
interfaces the internal status and control signals. These signals are not shown on the 
figure but connect to most of the other modules. One important register which is held 
inside this module is the channel enable register that makes it possible to exclude 
channels used for the busy verification. One channel can be recognized as one RCU - 
D-RORC link.  

Busy Generator

Event ID
verification

Module

Receiver Module Transmitter
Module

Rx Memory
Module

Control and
Status Registers

Trigger Receiver
Module

DCS bus arbiter and address decoder

BusyBox Bus
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TTCrx Ready
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Figure 5-11: Overview of the BusyBox firmware modules. Edited from [40] 

The Receiver Module contains up to 120 serial receivers depending on a global 
generic that is set at the top level. The event ID and the channel number are coded 
into a custom serial bus protocol, and are buffered in the Rx Memory Module, and 
sent to the Event ID Verification Module for evaluation. The Transmitter Module 
only contains one serial encoder that will transmit on all channels to all D-RORCs 
that are not masked away by the channel enable register.  

Of the output from the Trigger Receiver Module only the event ID, the triggers and 
the busy signal are of interest for the BusyBox. The event ID is read from the CDH 
FIFO immediately after receiving an L2a trigger and stored in a local queue in the 
Event ID Verification Module. The verification process then starts by sending 
requests to all D-RORCs via the Transmitter Module, and the incoming replies are 
buffered and processed. The triggers from the Trigger Receiver Module are used to 
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increment the used buffer counter for each channel, while the busy is sent to the Busy 
Generator. The busy decision is in the end decided based on three parameters: the 
TTCrx ready from the TTC system, the busy from the Trigger Receiver Module, and 
the calculation of free multi event buffers in the Fee. The feature of including the 
TTCrx ready signal for busy generation is not described in [40]. It has been added at 
a later stage since it is a requirement of the TTC system that busy should be asserted 
when TTCrx ready is not.  

5.6 Conclusion 

The described version of the RCU main FPGA firmware has been extensively tested 
at the time of writing (August 2008). The main structure of the firmware is kept as 
described in [13], except that the Control Node and the Readout Node are more 
strongly separated than before. Earlier the Module and Safety Module were 
connected to the same bus as all the other modules. For the Control Node itself the 
new version does not differ much from the previous version, except that the Active 
Front-end Card List, that decided which FECs are powered, has been moved to the 
ALTRO Interface Module so that it is accessible for the DDL during configuration of 
the system.  

The Readout Node is extensively updated. The Trigger Receiver Module as described 
(version 1.2) has been completely redesigned in respect to the version 1.0 that up 
until recently is the one that has been used. The Instruction Sequencer and the Result 
Unit have also been improved with among others detailed error and status 
information concerning the finished transactions.  

The tests of the BusyBox have so far shown that it is stable and operating as it 
should, and only minor changes have been done to the final design as described in 
[40]. This implies that the trigger reception logic behaves as intended in a real life 
system and is backward compatible to work with RCU firmware version that has the 
older version of the trigger receiving logic. 

The first large scale tests of the new RCU main FPGA firmware are promising. This 
is discussed in section 6.4.4.  
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Chapter 6  
 
 
Verification and Testing 

The system as described in the previous chapters has been extensively tested. This 
chapter describes the various tests and the outcome of them. As the previous chapters 
mainly have covered firmware designs, the chapter opens with a discussion on 
firmware simulation and modelling as it is performed on the various modules written. 
The focus is then moved to the hardware tests and irradiation tests of the different 
sub-systems described, before discussing the integration tests and commissioning 
periods of the TPC and PHOS detector. 

6.1 Functional Verification of the Firmware Modules 

6.1.1 Introduction 

Functional verification verifies the design intent and can easily be classified as one of 
the most important tasks in the design cycle of a digital design. The main reason for 
this is that when the design is built and programmed to the hardware it is a black box, 
i.e. it is almost impossible to peer inside it to see if it behaves as intended. Tools exist 
for FPGAs that implement an internal logic analyzer in the chip (Xilinx Chipscope 
Pro, Altera signalTAP etc.), but even if these tools are of great help during the 
process of verification and testing, they can not replace a functional verification of 
the behavioural model in a computer simulator. The best way of doing functional 
verification is by using a testbench. A testbench is a piece of code that simulates the 
environment of which the design under test is supposed to be working in. The 
testbench is a completely closed system that has no inputs or outputs. It can be 
written in special firmware verification languages like systemC and systemVerilog, 
but it is also possible to build a relatively complete testbench in VHDL. Based on 
experience, a quality testbench should be able to: 

• Verify the behaviour of the design automatically, i.e. without manually 
needing to verify all waveforms in the simulation. 

• Be easily scalable for upgrades of the design under test module. 
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• Generate reproducible results each time it is run. 

• Produce informative outputs such as log files and data output files where 
applicable. 

• Produce a good code coverage score27. 

• Give an opportunity to simulate both the behavioural model as written in 
VHDL and the post place and route netlist generated by the designated tools. 

These points coincide to a large extent with what is stated in [41], but to make a 
testbench obeying all these rules is time consuming. Therefore it may seem 
unnecessary if the design is not very complex. However, what often is the case when 
a proper testbench structure is missing, even for simple designs, is that the designs 
have more bugs and correcting the bugs is less efficiently done. 

For all the designs described in the previous chapters a testbench structure like 
described has been developed. All testbenches that are used for simulation of the 
modules are created in VHDL. The testbenches use a package where a number of 
procedures and functions are defined. These procedures and functions can do bus 
transactions on the DCS bus, and verify the validity afterwards. In addition, there are 
functions for creating log messages both in the simulation prompt and in a log file. A 
clock generator is also created that generates a 40 MHz clock signal, a stimuli trigger 
and a sample trigger. The triggers are used to simulate setup and hold times in the 
external interfaces. The clock and triggers can be enabled and disabled, which is very 
useful as one can then stop the simulation automatically since no more actions are 
taking place in the simulation. It is preferred that the bus master of any system is 
implemented using procedures in a VHDL construct called a process. Any slaves in 
the testbench are preferrably made as simulation models that respond to the impulse 
from the design under test (DUT). These simulation models are often difficult to 
design since it normally is a divergence between how the designer thinks the 
simulated device is behaving and how it really is behaving. Some manufacturers offer 
downloadable simulation models with their devices, but this is unfortunately not very 
common. 

By setting a generic variable, the post place and route model can be simulated instead 
of the behavioral model. Post place and route simulation is a very time consuming 
                                              
27 The code coverage score is produced by a designated software tool or a simulator that supports this feature, for instance  
Mentor Graphics Questasim that is used for the presented work. 
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task. Depending on the complexity of the logic to be tested, it can be several orders of 
magnitudes slower than simulating the behavioral model. Thus, having an already 
verified and automatic testbench structure that can be used in both types of 
simulations is of great advantage. If done properly, the resulting log file should hold 
enough information to know that the design is behaving as intended, both when 
simulating the behavioral model and the post place and route model. Another 
advantage is that it is possible to run the post place-and-route simulation while doing 
something else and verify the output afterwards.  

6.1.2 Testbench for the Trigger Receiver Module  

 
Figure 6-1: Testbench for Trigger Receiver Module. 

The testbench for the Trigger Receiver Module is sketched in Figure 6-1. The Trigger 
Receiver Module is the DUT. The DCS interface as described in section 3.5.2 is 
added so that the functions and procedures can be used directly towards the internal 
RCU bus structure of the trigger receiver. This also means that the DCS interface is 
simulated in context of how it will be used, in addition to the specific simulation done 
separately. Additionally to the DUT, there is a Producer and a Responder Module. 
The Producer Module simulates the Channel A and Channel B interface. The 
Responder Module simulates the internal logic interfaces, the reading of the FIFO etc. 
The Producer also forwards the generated stimuli to the responder. In this way, the 
Responder can verify the content that is produced by the Trigger Receiver Module. 
The testbench is controlled by the process p_tb. This process implements the different 
test cases by using the defined procedures in the testbench package. Additional 
procedures have been developed to simplify the structure of the process and to 
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control the producer. The producer can be told to send correct trigger sequences or 
trigger sequences with various error situations so that all the error handling of the 
Trigger Receiver Module is validated.  

The testbench runs through the various defined test cases to have a good coverage 
(more than 95% branch coverage) of all the code in DUT and writes errors, warnings 
and notes to a log file.  

6.1.3  Testbench for the PHOS Board Controller 

 
Figure 6-2: Testbench for the PHOS Board Controller 

The same testbench package and structure is applied to the PHOS Board Controller. 
The p_stimuli process does the DCS bus transactions that define the test cases to a 
synthesized simulation model of the RCU main FPGA firmware. This is done 
primarily since it is then certain that the ALTRO bus and the FC bus protocols are 
implemented correctly. Secondly, it helps adapting the testbench package for the 
DUT.  

As the ALTRO bus is shared between 4 ALTROs and the Board Controller on the 
FEC, an ALTRO simulation model has been added28. It is also possible to set a 

                                              
28 The ALTRO simulation model is the work of the EP/ED group at CERN and is downloaded from http://ep-ed-alice-
tpc.web.cern.ch. It has been slightly modified to match the testbench environment. 
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generic amount of FECs connected to the RCU simulation model. Additionally, there 
is a simple simulation model of the DACs and the ADCs29 on the FEC. This 
testbench ensures that all possible features of the Board Controller design are tested 
thoroughly. 

6.1.4 Testbench for the RCU support FPGA firmware 

The testbench involves a complete simulation model for the RCU Flash Memory 
Device30 and a very simple simulation model for the selectMAP interface that gives a 
few responses to the data/control lines of the selectMAP bus. For the selectMAP 
mode and Flash mode operation of the firmware, it has only been verified that the 
output is a direct map of the input as intended.  

6.1.5 Testbench for the DCS board firmware. 

The testbench for the DCS board firmware involves only verification of the RCU 
Communication Module, since this is the only module designed specially for 
TPC/PHOS. As this firmware implements the DCS bus master, a complete set of 
procedures has been written that simulates the ARM stripe interface. One DCS Bus 
Slave Module has been attached that includes available registers, and also the post 
place and route simulation model of the RCU support FPGA has been added so that 
the Flash interface can be verified with the correct delay model that is introduced by 
this device.  

6.2 Hardware Tests of the Firmware Modules 

6.2.1 Trigger Receiver Module  

The hardware verification is performed with an RCU setup and an LTU running a 
CTP emulator software[9], see section 6.3. A special design for the RCU main FPGA 
has been used where the Trigger Receiver Module is synthesized in debug mode. The 
                                              
29 The ADC simulation model is an I2C slave simulation model developed by Richard Herveille (richard@asics.ws) and 
John Sheahan (jrsheahan@optushome.com.au) and is downloaded from http://www.opencores.org/projects/i2c/. The model 
has been slightly modified to match the testbench environment. 
30 The RCU Flash Memory Device simulation model is downloaded from http://www.macronix.com/.  
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DCS interface as described in section 3.5.2 is included in the test design and hence is 
also then verified.  

The CTP emulator is used to send sequences, and DCS board scripts have been made 
to setup the Trigger Receiver Module to match the LTU, read all interesting registers 
per event sent and read the FIFO via the DCS board. The DCS scripts can be 
configured to generate a log file. The log files are used to verify that the content and 
the behaviour are as expected. Various trigger sequences have been tested with the 
CTP emulator, including for instance normal physics trigger sequences, start of run 
and end of run sequences. 

In addition, a long term stress tests and functional tests have been done as part of the 
BusyBox testing as described in [40]. 

6.2.2 PHOS Board Controller 

 
Figure 6-3: Board Controller test setup in the laboratory at the University of 
Bergen. 

The design has been functionally verified in hardware with a setup consisting of one 
RCU and, due to the very limited number of spare FECs, only one FEC connected to 
position 9 on RCU branch A (see Figure 6-3). On the PHOS module, the GTL 
backplanes connect to the RCU using flat ribbon cables of length ~40 cm, but on the 
test setup these were replaced by two small mezzanine cards. Cases that have been 
functionally verified are amongst others ALTRO bus communication (both to Board 
Controller and ALTRO), FC bus communication, DAC communication, ADC 
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communication, handling of Hamming errors and generation of the interrupt signal to 
the RCU.  

In addition a stress test has been performed of the FC bus interface and the ALTRO 
bus interface. On the test setup, more that one million transactions on the ALTRO 
bus went without errors, and more than a quarter of a million transmissions (4 bytes 
each) on the FC bus did the same. 

On the complete PHOS module #1 it has been functionally verified that FC bus 
communication works with more than one FEC attached and powered. Concerning 
the ALTRO bus protocol, certain timeout situations happen at an approximate rate of 
maximum a few percent, normally less, of all transactions. It has been verified that 
the reason for these timeout situations is that the Board Controller does not recognize 
a valid address when an error occurs. This has been tested with a various number of 
FECs powered. Even with only one FEC powered, which is an equal situation to the 
one in the laboratory except for the flat cable bus extension, the rate of failing 
transactions is of the same order of magnitude.  

In March 2008 tests were performed on PHOS module #231 where register 
transactions were done to both Board Controller and ALTRO on all connected FECs 
on both branches. Additionally, a test of data readout was performed. The Board 
Controller version used in these tests was version 3.4, which was considered to be 
stable and free of all possible child deceases. The register transaction tests using the 
ALTRO bus gave approximately the same result as the test carried out on PHOS 
module #1, but it was seen that the number of failing transactions varied depending 
on the position of the FEC on the backplane. Where some FECs had a failure rate of 
0.1 %, others were close to 50%, which is unacceptable. The registers transaction test 
using the Front-end Control Bus, gave 3 failing transactions out of a total of 14336 
transactions (1024 transactions to each of the 14 cards on branch A). The data readout 
test was done by first writing a ramp to the ALTRO pedestal memory, and then 
reading it back in data readout mode. Evaluation of these tests showed a data 
decoding error rate of approximately 0.5%. Because of this, the firmware was 
evaluated once more and a minor detail that might have caused glitches on the GTL 
driver signals was found. This was corrected and a new version was released (version 
3.5 - see appendix D.4.2). New tests were performed, but no real improvement was 

                                              
31 Hardware tests on PHOS module #2 were performed by Per Thomas Hille (perthi@fys.uio.no) and Dieter Röhrich 
(dieter.rohrich@ift.uib.no)  
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seen because of the upgrade, which was taken as an indication that the problem is not 
related to the BOrd Controller firmware.   

An independent test of the PHOS backplanes was carried out at the University of 
Oslo in February 2008 [42]32. The results showed that the flat ribbon cable extension 
clearly imperils the quality of the GTL signals due to the impedance mismatch 
between the cable and the PCB bus. The GTL transceivers and bus should ideally see 
a uniform 75 Ω transmission path. However, due to the lack of a ground reference on 
the cable its characteristic impedance is measured to be around 135 Ω. This 
degradation of the GTL signals might explain the reason for the failing transactions. 
On the test setup in the laboratory at the University of Bergen where the flat ribbon 
cables were replaced by the mezzanine cards, the Board Controller has already from 
version 3.1 appeared 100% stable.  

6.2.3 RCU support FPGA 

 Functional test with special test design for Xilinx  
A complete functional test has been performed on the RCU support FPGA firmware, 
where all features have been verified working. For this test, a special Xilinx design 
making use of LUT RAMs has been designed. When doing Active Partial 
Reconfiguration, LUT RAMs should normally be avoided since the content of a LUT 
RAM is stored in configuration memory elements. This is exactly why it is perfect for 
a functional verification of the Active Partial Reconfiguration. It is in this way 
possible to inject errors in a controlled environment. The LUT RAM in the test 
design is by default set to zero and is possible to address from the DCS board. When 
doing frame by frame readback, verification and correction, the number of errors in 
the configuration memory matches the number of ‘1’s written to the LUT RAM. The 
value stored in the LUT RAM is at the same time cleared. This test gives the first 
proof of concept of the Active Partial Reconfiguration solution, and is a useful base 
to have prior to testing the design in a radiation environment. 

                                              
32 Tests of PHOS GTL backplanes were performed by Bernhard Skaali (t.b.skaali@fys.uio.no) and Geir Frode Raanes 
Sørensen (g.f.r.sorensen@fys.uio.no), University of Oslo, Norway. 
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 Tests performed with RCU main FPGA firmware dated 19.06.06 
This Xilinx design includes version 1.0 of the described Trigger Receiver Module 
and a different DCS interface. The tests were done in a laboratory environment, 
hence is it expected that no SEUs should be detected. The following tests were done: 

• Monitoring the health status of the TPC FECs. Three ~12 hour runs were 
made: One reference run without any active operation on the RCU support 
FPGA, one run with scrubbing and one run with frame by frame read back, 
verification and correction. As expected, no SEUs were detected by the RCU 
support FPGA. The values read out (temperatures, analogue voltage/current, 
and digital voltage/current) did not show any significant divergence between 
the runs.  

• Reading out data using full data path including DATE on PHOS setup with 
one single FEC. Software triggers were used and three runs with 200 software 
triggers each where done (same as above). The data was not investigated since 
it is not likely that the reconfiguration should affect the data quality. All 
triggers were counted in the RCU Xilinx FW and seen by DATE. No SEUs 
were detected by the RCU support FPGA as expected. 

6.2.4 DCS board Firmware 

The hardware testing of the DCS board has been divided into testing the three modes 
of operation of the RCU Communication Module: the normal operation mode, 
selectMAP mode and Flash mode. The testing has been performed by scripts on the 
DCS board. The Flash mode has been stress tested by writing two files of size 3.3 
MB and 4.0 MB to location 0x0 and 0x200000 respectively. Following each writing 
the content of the Flash Memory Device was read back and verified. The Flash 
Memory Device was erased between each cycle. 50 cycles were executed with no 
errors detected. The test lasted for about 6.5 hours. 

Finally it is worth mentioning that the DCS board with the discussed firmware has 
been used for the RCU and the BusyBox at TPC, PHOS, EMCal and FMD for 
several years. Some minor problems have been found during this time that have been 
taken care of. The changes and bugfixes are documented in the version change log in 
appendix section D.2.2. 
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6.3 Irradiation and Fault Injection Tests 

Irradiation tests have been performed for several reasons. Firstly it was done to 
characterize the different devices used in the Fee to decide whether they would 
withstand the radiation environment and behave normally. Results from these tests 
have been published in [7, 8]. One test was done to verify the operation of the design 
at system level. This was performed at the cyclotron at the The Svedberg Laboratory 
in Uppsala, Sweden in 2005, and involved both the data path and the Fee DCS. 
Finally, irradiation tests have been done to verify the effect of the Active Partial 
Reconfiguration solution. This has also been done by the use of fault injection. Fault 
injection simulates the effect that the radiation environment has on the FPGA, by 
randomly injecting bit flips in the configuration memory of the Xilinx by a custom 
made software tool33.  

The system level irradiation test were done on a complete Fee chain and the number 
of errors found in the test are in an order of magnitude of what can be expected from 
earlier tests[7]. But even if the test gave the expected error rate, it has to be taken into 
consideration that the resulting statistics were not very high and only indicates how 
the system will operate in the ALICE radiation environment. With no mitigation 
techniques it can be expected to have one functional failure per hour on all 216 RCUs 
in the TPC. The approximate same number applies for the DCS board. The Active 
Partial Reconfiguration logic was not ready at the time of the test, so the effect of this 
feature could not be tested.  

The Active Partial Reconfiguration solution has been tested in two ways34. 1) 
Irradiation tests at Oslo Cyclotron Laboratory and 2) Fault injection tests in the 
laboratory. In both tests a specially designed firmware for the Xilinx has been used 
that enables the possibility to test the effect of the Active Partial Reconfiguration 
when no mitigation techniques have been applied at design level and when a 
commonly used mitigation technique (TMR) has been applied. The preliminary 
results as given here are from [43].  

What can be concluded from the irradiation tests is that the Active Partial 
Reconfiguration alone can not prevent functional errors from occurring, but together 
                                              
33 This tool is designed by Ketil Røed (ketil.roed@ift,.uib.no), University of Bergen/Bergen University College and runs on 
the DCS board. 
34 The irradiation tests and fault injection tests quantifying the effect of the Active Partial Reconfiguration has been 
performed by Ketil Røed (ketil.roed@ift.uib.no). The complete results from these will be published in the near future. 
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with conventional mitigation techniques it reduces the number of functional errors to 
a negligible level. The fault injection test showed that when applying both Active 
Partial Reconfiguration and TMR, it took in average 4 times more SEUs to create a 
functional error than when doing no action at all. Active Partial Reconfiguration 
alone did not make any measurable difference. It was on the other hand seen that 
when doing no action at all the current consumption was steadily rising, but when 
applying Active Partial Reconfiguration it immediately stabilized at nominal level. 
This might imply that even though Active Partial Reconfiguration alone does not help 
reducing the rate of functional failures, it can have an impact on the lifetime of the 
components. Even so, both tests clearly emphasize the need of implementing 
mitigation techniques on a design level in addition to doing Active Partial 
Reconfiguration. 

6.4 System Integration Tests and Commisioning 

6.4.1 Introduction 

Both the TPC detector and the PHOS detector have been through long and extensive 
installation and commissioning periods where the electronics and the detector itself 
have been tested and characterized. This section will give a short summary of the 
outcome of these tests in perspective of the electronics. One important note is that up 
until recently the tests have been performed with the RCU main FPGA firmware 
version from June 2006 (version 1.0). This version includes a much simpler version 
of the Trigger Receiver Module than described in this thesis. A short summary on 
tests performed with the new RCU firmware version as described in this thesis is 
given in section 6.4.4. 

6.4.2 TPC Electronics Commisioning 

The installation and commissioning of the TPC have lasted from early 2006 and are 
still ongoing. During pre-commissioning phase, two and two sectors were tested at a 
time using different kinds of triggers distributed by the TTC system. The tests 
included testing of electronics and calculation of pedestal values, verification of gain 
amplification factor, stability testing and overall verification by using laser tracks in 
the TPC. The installation and pre-commissioning phase are discussed in more details 
in [13]. During the testing it has been verified that the RCU is moving data with the 
rates as expected. The DCS has also been extensively tested during pre-
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commissioning where the Fee have been monitored, exercising the Fee DCS from 
intercom layer and down. It has been verified that the monitored values are stable 
except for the digital current and the temperatures, which both rise within acceptable 
boundaries during an event readout when the traffic on the FEC increases.  

The testing, calibration and characterization of the TPC continued in the 
commissioning phase where the complete A side or C side has been powered at the 
same time. These tests have included the BusyBox that has proven to perform 
according to specification. It has also been seen that the DCS scaled well with minor 
adjustments, and many of the PVSS panels in the supervisory layer have been 
implemented (see Figure 3-10 and Figure 4-11).  

6.4.3 PHOS commisioning 

Only one PHOS module is installed from the very start of LHC. The installation and 
pre-commissioning for PHOS module #1 started in 2005. During pre-commissioning 
phase the PHOS module #1 has been calibrated using led triggers, cosmic triggers 
and electron beam. In this way the High Voltage APD bias settings could be 
calculated to set the gain correctly on each channel. The electronics have been tested, 
which include data readout and trigger generation. The DCS monitoring was not 
possible to test, because of a problem in PHOS concerning the FC bus (see section 
3.6.7). Stability testing using cosmic trigger and data has been done for a long period 
of time. The RCU main FPGA firmware used is from December 2006, which is the 
TPC firmware with minor adaptations to make it more suitable for PHOS. For PHOS, 
it is a problem that this firmware version is implemented with version 1.0 of the 
Trigger Receiver Module. This does not support level 0 triggers via the TTC system. 
This problem was bypassed by PHOS implementing its own hardware level 0 trigger 
input. 

PHOS module #1 was originally planned to be lowered in the ALICE cavern end of 
2007, but it had to be postponed due to the failing readiness of the module. The 
extensive testing period showed several problems. A too high number of dead 
channels and bad channels, i.e. channels with too high noise level, were detected. 
Noise problems were also a major issue in the electronics for trigger generation, and 
digital errors in the data stream were experienced at a rate that was not acceptable. 
Because of all the problems detected it was decided to open PHOS module #1 for a 
more thorough inspection (The PHOS modules are sealed when fully commissioned). 
When disassembling the module, a problem with condensation and corrosion of the 
electronics in the connection point between the cold and warm zone was discovered. 
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Together with the problems found with the flat cable extensions as discussed in 
section 6.2.2 this might explain some of the reasons for the problems with PHOS 
module #1.  

Commissioning phase of PHOS module #2 started late 2007 and equivalent tests have 
been performed of this module showing a much improved behaviour compared to 
PHOS module #1, even though the RCUs are still connected to the backplanes via flat 
ribbon cables. The rate of errors was found to be at an acceptable level, hence it was 
decided to include PHOS module #2 from the start of LHC. To prevent problems 
with condensation, the cold zone will not be cooled to the nominal operative 
temperature of -25 °C until it is ensured that the module is airtight. This means that at 
the start up LHC, PHOS will have a slightly degraded energy resolution since the 
light yield goes down with increasing temperature. 

6.4.4 Tests involving RCU firmware version 2.0 

 
Figure 6-4: Screenshot from run number 42188 showing a cosmic event in 
TPC. The run included the following detectors HMPID, PMD, ITS, TRD, 
TPC with SPD trigger. Additionally HLT was running. From commissioning 
shift report 28.06.2008 by Dominik Fehlker35 

The first tests of the RCU firmware as described in this thesis (labelled RCU 
firmware version 2.0) are being performed at the time of writing and the first results 
are very promising. One test performed is to verify the validity of the CDH. In this 

                                              
35 Dominik Fehlker (dominik.fehlker@uib.no), University of Bergen 
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test 48 RCUs participated in a 30 minute long run with a trigger rate of 180 Hz. 
Altogether 100000 events were read out and the CDH were analyzed automatically at 
the level the GDC, and no failures were seen at all[44]. 

In addition, full readout and sparse readout have been tested and verified working for 
the TPC. A screenshot showing a cosmic event in TPC successfully taken with RCU 
firmware version 2.0 is shown in Figure 6-4.  

The DCS board Control Engine and FeeServer have been adapted to match the new 
register mapping and features of the new RCU firmware version. No updates were 
needed for the DCS board firmware. All tests done so far have shown that the Fee 
DCS are running smoothly together with the new RCU main FPGA firmware, and no 
problems are yet discovered.  

Preliminary tests with Active Partial Reconfiguration in the lab show that it is 
possible to operate the RCU firmware normally while reading frames continuously. 
As expected, no SEUs have been detected. 
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Chapter 7  
 
 
Error Handling on a System Level 

This chapter discusses what can be done on a system level to reduce the effect of 
errors in the electronics. This can be all sorts of errors including transaction errors, 
electrical errors, errors due to noise in the system, radiation related functional errors 
etc. This chapter focuses mainly on the latter; as such errors will occur several times 
during the lifetime of the experiment.  

7.1 Introduction 

In a large scale system such as the ALICE detector, errors in the electronics of 
different kinds are bound to happen over the lifetime of the project. These can for 
instance be errors due to electrical noise, physical errors, transmission errors or 
radiation related errors. The errors can be divided into permanent errors and non-
permanent errors. In this context a permanent error is an error that needs a full system 
reset or even power down to be cleared, while a non-permanent error can be cured 
while keeping the system online. If the errors can not be completely prevented, as is 
the case with the radiation related errors, it is of high importance to make the design 
such that the errors have as little effect as possible. The system should quickly 
recover and the error should not have spreading consequences outside of the sub-
system where it occurred.  

7.2 Errors in the RCU main FPGA 

7.2.1 Consequences 

The RCU main FPGA is divided into two separate nodes, the Readout Node and the 
Control Node. The severity of the error is decided by which node the error occurs in. 
Errors in the Readout Node can lead to loss of data while an error in the Control 
Node most likely will prevent the operator from seeing the status of the system. The 
first can clearly be defined as the most severe error.  
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The consequence of an error in the Readout Node is that loss of data is almost certain 
to occur. If for instance a channel B transmission error occurs resulting in a double 
hamming error, the trigger information might not be successfully generated and the 
RCU will send data without payload. In other words, one event will be lost for one 
RCU. The RCU may still be able to generate and send a CDH, which means that the 
DAQ system gets all the event fragments and the run is not aborted. A worse 
situation can occur if there is a radiation related error blocking the readout path for up 
to 150 ms (the time it takes until it is corrected – worst case). If the consequence of 
this is that the RCU is freezing, maybe as many as approximately 130 events are 
prevented from being sent to the D-RORC. The BusyBox will raise the busy flag to 
the LTU when the buffers on the Fee are considered to be full, which is after 4 events 
(or 8 events, depending on number of samples). A fatal consequence of this might be 
that one RCU failing will block the whole TPC from sending data, or – even worse – 
the DAQ system automatically aborting the run due to missing event fragments. 

As mentioned in section 3.4.10, around 4 radiation related functional failures are 
expected per run if no mitigation techniques are applied. Roughly estimated, 40% of 
the resources in the RCU main FPGA are related to logic directly involved in trigger 
and data path (Trigger reception, ALTRO interface, Data Assembler and SIU 
interface). This gives around 1.5 functional errors in this logic per run, of which the 
consequence is hard to estimate until measured. However, it is seen that occurrences 
of functional failures that block the data readout are likely. 

The consequence of an error in the Control Node is not as fatal as it is for the 
Readout Node. Transaction errors on the FC bus can happen, but these are most 
likely not of a permanent nature. If it is permanent, it is a FC bus slave that is stuck. 
This is discussed in section 7.4. If an SEU induces a radiation related error in the 
Control Node, the worst case is that one must wait until the error has been corrected 
before being able to access the logic. 

7.2.2 Proposed Solutions for Error Handling 

There are many ways of making the design more robust against errors. Some are 
already implemented in the design, such as hamming coding of the trigger 
information. This prevents transmission errors from having a negative effect on the 
design. Additionally, it is wise to implement the following: 

• Timeout counters on tasks imminent to hang. Having timeout counters on 
these tasks will greatly improve the possibility the design has to recover from 
an error situation. 
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• Soft resets. A soft reset will reset the state of a design (i.e. bring all state 
machines back to idle) without changing its configuration in case an error has 
led the system to hang. This is an external recovery solution, and is dependent 
on the next point given.  

• Meaningful Status/Error registers: By implementing error/status registers it is 
easy for the overlying control system to identify the occurrence and location of 
an error situation. It is also easier for the DCS to do the correct exception 
handling. 

• Safe and One-Hot state machine implementation. One-hot state machine 
encoding means that there are more possible illegal states than legal states and 
that one need at least two bit flips to go from one legal state to another, which 
is not very likely as a result of an error. A safe state machine is a state machine 
of which all illegal states will be passed into idle state. Any synthesizer tool 
will normally support both these settings. 

• EDAC codes on the data stored in memory. For instance hamming coding all 
data would ensure that radiation related errors in the BRAM would not 
endanger the quality of the data. A different approach for securing the content 
in the BRAM is given by Xilinx in [45], where the BRAM is constantly 
refreshed. 

• Redundancy of vital parts of the design: Especially for radiation related errors, 
implementation of TMR will improve the behaviour of the design, as shown 
by the tests presented in section 6.3.  

It is of high importance to keep the design from freezing at a given state because of 
an unexpected error situation. By the use of timeout counters, the design notices this 
on its own and returns to idle. Additionally, the DCS board should be able to verify 
the status of the RCU main FPGA and, if needed, do a soft reset that sets the different 
failing parts back to idle.  

Based on the results of the irradiation tests and fault injection tests (section 6.3), it 
seems clear that in order to reduce the risk of functional failures it would be wise to 
implement the complete design with TMR36, by making three exact copies of the 

                                              
36 For some Xilinx devices, this can be done with TMRTool that is a special tool developed by Xilinx for implementing 
TMR in Xilinx Devices                    
(currently supported: Virtex-4, Virtex-II and Virtex): http://www.xilinx.com/ise/optional_prod/tmrtool.htm  
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firmware and add voters on all outputs. This is also recommended by Xilinx for space 
applications where Xilinx devices are used[46]. The risk of radiation related errors 
would then be significantly lowered, and the need for other mitigation techniques 
would have been toned down. Unfortunately the current hardware solution prohibits 
this solution because of area restrictions in the chosen FPGA.  
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Figure 7-1: Suggestion on how to increase the radiation tolerance for the 
RCU main FPGA design. 

A less area consuming alternative is shown in Figure 7-1, where only the modules 
directly involved in the generation and sending of the CDH are protected with TMR. 
In the sketch this is simplified to show the whole Readout Node as TMR protected. 
As already discussed, not sending the CDH to the DAQ system will prematurely 
abort the run. This means that given the area constraints of the RCU main FPGA, the 
main focus when applying mitigation techniques must be to ensure that the CDH is 
always correctly received and sent. If the data are temporarily corrupted or if no data 
is submitted is not important, as long as the system is able to recover.  

7.3 Errors in the Trigger and Data Path 

As described in section 7.2.1, a consequence of an error in the Readout Node in the 
RCU main FPGA is that the BusyBox flags the busy line to the CTP at false 
conditions. Or even more severe: The DAQ aborts the run because of an error that is 
of temporary nature. Implementing the RCU main FPGA firmware as described in 
the previous section would reduce the risk of such errors, but because of the amount 
of devices involved, this type of error situation can easily come from other sources as 
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well. The severity of such error situations means that ideally it would be best to 
handle them online as early as possible. 

A possible solution for this is to implement DCS status monitoring of the BusyBox. 
As the DAQ system is completely data driven and exists in parallel with the DCS, the 
DCS can not monitor if the event fragments arrive at the DAQ directly. But it can be 
done on the BusyBox. The BusyBox has registers that gives the status of each 
channel. The channel is directly mapped to a RCU – D-RORC link, and this means 
that the BusyBox will be the first device to notice if one or more event fragments are 
missing. If one channel reports that the buffers of the Fee are close to full while all 
the rest of the Fee buffers are empty, it is a clear indication that the given channel is 
erroneous.  

When the LHC starts it can be verified if this is a problem occurring with an 
unacceptable frequency. If so, the failing Fee system should preferably be removed 
during runtime from the channel enable list to ensure correct busy assertion. 
Additionally, this node should be removed from the DAQ equipment list so that the 
run is not automatically aborted37. The BusyBox DCS reports this situation up in the 
hierarchy, so that either the operator or the DCS automatically verifies the status of 
the failing Fee. If it is a physical error, the Fee should be kept removed from the 
DAQ equipment list and the BusyBox channel enable list for the rest of the run, and 
then debugged offline. If the cause of problem is a radiation related error, the Fee can 
safely be included in the run when the error is corrected.  

7.4 Errors in the Fee DCS 

As the Board Controllers on all FECs are SRAM based FPGAs, they are susceptible 
to radiation related errors. If an error occurs in one of the two communication 
interfaces to the RCU, it might actually block the data traffic of the branch that the 
failing FEC is connected to. The data traffic can be the ALTRO data or the health 
monitoring data depending on what interface that experiences a problem. The only 
way to cure such an error is to repower the failing board. If the error paralyses the FC 
bus it can be very difficult to identify which board is signalling the interrupt as it is 
hard to communicate with the FECs while the ALTRO interface is busy doing data 

                                              
37 Due to the DAQ architecture it is currently not possible to automatically during runtime update the DAQ equipment list.. 
It can only be altered by manual intervention when no runs are ongoing. 
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readout. If the FC bus still is operating normally, the different status registers of the 
Board Controller must be read and evaluated. But even these registers might not 
show any irregularities if the error is radiation related. The consequence of not 
finding the source of the error is that all boards must be powered down.  

The DCS board needs to handle the situation that the RCU does not respond or that it 
responds incorrectly, which can be the effect of a functional error in the Control 
Node. The DCS should then use the information given by the RCU support FPGA. If 
this reports an SEU some time afterwards, the cause of the error is already found. If 
the place and route process is constrained so that the logic related to readout and logic 
related to control are in separate locations on the FPGA, it is also possible to pinpoint 
the module that has experienced an error.  

If the DCS board itself is failing, a controlled reboot from the higher level DCS might 
get it running again depending on the severity of the error. If the error kills the 
Ethernet communication, the DCS board must by itself know that it is in an erroneous 
state and try to reboot itself38.  

7.5 Conclusion 

As discussed in this chapter, errors can and will happen during the lifetime of the 
project, and having proper exception handling is important. Some possible error 
situations are discussed, and some suggestions on how to deal with them are given. It 
is important to have a DCS that quickly responds to error situations. It should be 
emphasized that when building a state-of-the-art system such as the ALICE detector, 
it is impossible to foresee all kinds of error situations. The first runs with LHC beam 
will give valuable information on what error situations can be expected, and then it 
will be easier to decide on solutions that minimize the effects of them. 

                                              
38 The DCS boards are designed with an option of connecting neighboring boards so that each DCS board can control its 
nearest neighbor and reboot it, upload new data to the Flash Memory Device etc. This feature is used in TRD, and even if 
the software and firmware are available, this option was at some point decided not to be used for TPC, PHOS, FMD and 
EMCal and the special cables that are needed are not connected and even not made slits for in the cooling plates of the 
RCUs.  
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Chapter 8  
 
 
Conclusion and Outlook 

This chapter gives a short summary of the work covered by this thesis. 

The ALICE detector consists of several sub-detectors, of which TPC and PHOS are 
two. This thesis has focused on the Fee for TPC and PHOS, since these two detectors 
share many of the electronic components, of which one of the main components is the 
Readout Control Unit (RCU). The RCU consists of a Motherboard that connects to a 
given number of FECs from where it receives the data during data readout. These 
data are shipped out from the RCU through a SIU add-on card. In addition a DCS 
board is sitting on the RCU Motherboard, monitoring and controlling the state of the 
system. The RCU has been put in context with the TTC system, the DCS and the 
DAQ system, where especially the two first have importance for the work presented. 
The work has concentrated on trigger reception and handling at the Fee as well as the 
Fee DCS.  

Additionally, the BusyBox has been presented. This device is important for 
preventing the Fee from being flooded by triggers if the rate is higher than what can 
be handled. The trigger receiving logic and the DCS board logic of the BusyBox are 
inherited from the RCU design. 

Special focus has been given to the challenges that are related to the radiation 
environment that the electronics are operating in, and it has been seen that for all 
designs presented there is a trade off between the constraints given area and timing 
and the amount of mitigation techniques that are included. 

A state-of-the-art solution for correcting radiation related errors in the configuration 
memory of a Xilinx Virtex-II Pro FPGA without interrupting the operation of the 
firmware has been presented. It has also been verified that in order to prevent errors 
in the configuration memory for having measurable effect on the firmware itself, this 
feature is not enough. Standard mitigation techniques need to be applied as well. A 
discussion has been done concluding that minimum the modules directly related to 
the trigger and data path should be protected against radiation effects. As the RCU 
main FPGA firmware is already using most of the resources in the FPGA without 
applying mitigation techniques, a fair chance exists that certain parts of the firmware 



152 

design must be redesigned in order to make space for implementation of TMR of the 
modules involved in generating and sending the CDH to the DAQ system. 

All designs as presented have been extensively tested and are proven to behave 
according to specification. Future upgrades might still be needed as soon as the LHC 
is commissioned, as new requirements will most probably unveil when this happens. 
This can especially be foreseen concerning the reception and decoding of the triggers 
since there is room for sending a lot more information via the TTC system than what 
is utilized today. 

A main focus during the design path of the different designs has been to make them 
possible to support, maintain and upgrade them in the future, see Appendix C. The 
VHDL code is well documented and easy to read. All projects have generic testbench 
structures so that upgrades and changes can be done with as little effort as possible. A 
strict version numbering system has been used, and each version has been published 
together with a design document on a Wiki Webpage[47]39. In addition, Concurrent 
Versioning System (CVS) has been applied during the development phase. This 
systematic design methodology has not only ensured high quality designs with few 
errors, but made sure that the errors can quickly be corrected. As the designs have 
been thoroughly documented, verified and tested, the process of integrating designs 
in the large scale system has proven to be smooth and straightforward, considering 
the complexity of the system. The Bergen Wiki Webpage has been, and will continue 
to be, a great tool in this process since it gives one designated location that collects all 
the information necessary for both users and future designers. 

                                              
39 The Wiki Webpage has been set up by Matthias Richter (Matthias.richter@ift.uib.no) and Sebastian Bablok 
(sebastian.bablok@ift.uib.no) at the University of Bergen. 
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Appendix B  
 
 
List of Abbreviations 

ACORDE ALICE Cosmic Ray Detector 

ADC Analogue to Digital Converter 

AHB Advanced High-performance Bus 

ALICE A Large Ion Collider Experiment 

ALTRO Alice TPC Readout (ASIC) 

APD Avalanche Photo Diode 

ASIC Application Specific Integrated Circuit 

ATLAS A Toroidal LHC ApparatuS 

BRAM Block RAM 

CDH Common Data Header 

CE Control Engine 

CERN Conseil Européen pour la Recherche Nucléaire 

CLB Configuration Logic Block 

CMS Compact Muon Solenoid 

CPLD Complex Programmable Logic Device 

CPV Charged-Particle Veto 

CSP Charge Sensitive Preamplifier 

CSR Control/Status Register 

CTP Central Trigger Processor 

CVS Concurrent Versioning System 

DAC Digital to Analogue Converter 

DAQ Data Acquisition  
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DCS Detector Control System 

DIM Distributed Information Management 

DUT Design Under Test 

EBI Expansion Bus Interface 

ECS Experiment Control System 

EDAC Error Detection and Correction Coding 

EDC Error Detection Coding 

EMC Electromagnetic Calorimeter 

EMCal Electromagnetic Calorimeter 

FC Bus Frontend Control Bus 

FEC Front End Card 

Fee Front-end electronics 

FeeServer Front-end electronics Server 

FIFO First In First Out 

FMD Forward Multiplicity Detector 

FPGA Field Programmable Gate Array 

GCLK Global Clock logic 

GTL Gunning Transfer Logic 

I2C Inter-Integrated Circuit  

IO Input/Output 

JFFS2 Journaling Flash File System 2 

JTAG Joint Test Action Group  

LHC Large Hadron Collider 

LHCb LHC beauty 

LTU Local Trigger Unit 

LUT Look Up Table 
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MMU Memory Management Unit 

PASA PreAmplified Shaper 

PHOS PHOton Spectrometer 

PLD Programmable Logic Device 

PVSS ProzessVisualisierungs und Steuerungs-System  

RAM Random Access Memory 

ROM Read Only Memory 

RCU Readout Control Unit 

SEU Single Event Upset 

SPD Silicon Pixel Detector 

SRAM Static Random Access Memory 

TMR Triple Modular Redundancy 

TPC Time Projection Chamber 

TRD Transition Radiation Detector  

TRU Trigger Region Unit 

TTC Trigger, Timing and Control 

TTCrx TTC receiver 

UART Universal Asynchronous Receiver/Transmitter  

USB Universal Serial Bus 

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware 
Description Language 

ZDC Zero Degree Calorimeter 
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Appendix C  
 
 
Design Methodology 

This chapter discusses the design methodology with a special focus given to the 
software tools used in the firmware designs presented in this thesis.  

C.1 Introduction 
To ensure high quality designs, it is of vital importance to follow a strict design 
methodology. A typical design cycle should consist of at least three steps: 1) Gather 
the functional requirements in a specification document, 2) doing the actual design, 
and 3) verifying and testing the design to make sure that it follows the requirements 
as specified. During a design cycle it is normal to move back and forth between the 
different steps, especially step 2 and 3. When finishing the third phase, the design is 
ready to be released with a given version number. If and when further modifications 
are needed due to bugs or requirement changes, the cycle is restarted from the top and 
results in a new release some time later. This approach has been followed for the 
designs presented in this thesis. 

C.2 Documentation 

C.2.1 Requirement Specification 

A template has been made for the requirement specification, giving all the documents 
a unified look and feel. Typically the specification document is written fairly simple 
prior to starting the actual design, and filled in with design description details 
afterwards. For each new version, the document has been updated so that it at all time 
matches the state of the design. 

C.2.2 Coding Guidelines and In Code Documentation 

An additional important task done for increasing the quality of the designs is the 
VHDL coding guideline document. This document states what are considered to be 
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“good code” and “bad code”, and helps unifying the coding style of the designers at 
Microelectronic Department at the University of Bergen. That all designers write the 
same dialect of VHDL, significantly simplifies the tasks of updating code written by 
other designers. Most of the code written in the presented designs follows these 
guidelines, but some code written prior to defining the coding convention have not 
necessarily been updated to match the convention.  

The VHDL coding guidelines also encourages writing in code documentation. This 
has been done for all designs.  

C.3 Version Management 

C.3.1 Release Versions 

A release version is defined when the firmware have implemented a set of decided 
requirements and these have been verified both functionally with a testbench and if 
possible on a hardware setup. For each release the design document is updated. The 
release version number is stored in a register in the firmware (except for the Trigger 
Receiver Module), making it possible to quickly decide what version of firmware the 
various users have on their system. The documentation and the version information 
simplify the support of the firmware, since the features and bugs of the various 
versions are known. 

C.3.2 CVS 

CVS is a version control system and is used to record the history of the source files. It 
is helpful to structure the project and keep track of changes done during a projects 
lifetime, tag certain versions of the code to make a final release-version and finally 
share the code between several designers working on the same project. 

CVS has been extensively used for automatically keeping track of all changes done to 
the documentation and source code files. All projects include a folder called VHDL 
and a folder called docs that are checked into the CVS database. In the docs folder, 
documents used as a reference base of the design are stored for most of the projects in 
addition to the design documentation itself. 
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C.4 Publishing 
When a final release version are done it is published on the Bergen Wiki 
Webpage[47] devoted to the Bergen activities in software and firmware development 
for the ALICE project. The information published typically consists of: 

• Source files, including testbench 

• Design documentation 

• Hardware test designs where applicable 

• Programming files where applicable 

• Scripts and other useful files for further testing and verification of the design 

• Version change logs 

Additionally, if there are known bugs and issues with some of the designs, these have 
been posted on the Wiki page with suggestions on workarounds until a new version 
has been released. The Wiki page also links to other important pages, for instance the 
CVS web interface. 
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Appendix D  
 
 
Tables and Firmware Version Change Logs 

This chapter lists the register maps and other important tables concerning the 
firmware that is described in this thesis. Additionally the firmware version change 
logs are listed. 

D.1 Table Legend 
The accessibility of the registers listed in the tables is given by 3 abbreviations: 

• W=write 

• R=read 

• T= write trigger (not physical registers) 

If the legend is RW it simply means that the register can both be read from and 
written to.  
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D.2 DCS board Firmware 

D.2.1 Tables 

Register name Address Type Description 
FW_Version[31:0] 0xBF00 R [31:24]  Day 

[23:20]  Month 
[19:16]  Year 
[15:8]  Major Number 
[7:0] Minor Number 

SM_Enable 0xBF01 RW Enables external selectmap interface 
set_old_mode 0xBF02 RW Sets the mode lines back to old mode (v2.7 

and prior) if writing 0x01d to this register.   
Set_Bunchreset 0x4A00 T Sets TTCrx_reset = BunchCnt_Reset 
Set_Eventreset 0x4A01 T Sets TTCrx_reset = EventCnt_Reset 

Table D-1: List of registers that can be accessed externally via the memory 
mapped module.  

Register name Address Type Description 
MSGiBuffer[31:0] 0x80000400 – 

0x800007FF 
RW User defined interface. Instruction 

Memory for MessageBuffer 
MSGoBuffer[31:0] 0x80000800 – 

0x80000BFF 
RW User defined interface. Result Memory 

for MessageBuffer 
RegFile[7:0] 0x80000060 – 

0x8000006F 
RW User defined interface. Control register 

for MessageBuffer 
smap_direct_ctrl[7:0] 0x80000070 – 

0x8000007F 
RW PIO interface. Selectmap Control Lines 

[0] cclk (output) 
[1] rdwr_b (output) 
[2] init_b (input) 
[3] prog_b (output) 
[4] busy (input) 
[5] cs_b0 (output) 
[6] done (input) 
[7] cs_b1 (output – in case of 2 FPGAs) 

smap_direct_in[7:0] 0x80000080 – 
0x8000008F 

R Selectmap data in 

smap_direct_out[7:0] 0x80000030 – 
0x8000003F 

W Selectmap data out 

Table D-2: List of register addresses that are accessed by the ARM CPU 
towards the RCU Communication Module.  
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Register name Address Type Description 
ComStat[7:0] 0x0 RW Command/Status register: controls the configuration 

controller and the mux for the access of the 
MSGiBuffer memory. 
[7]  Start Transaction. Starts the configuration 
 controller 
[6] 0: select configuration controller access to    
 the MSGiBuffer 
         1: select Linux access to the MSGiBuffer 
[5] DCS FW reset. Async reset ‘1’ = RESET 
[4]  Disable outputs. ‘1’ = Disable 
[3:2]  Mode_select(1:0)   
 "00" Memory mapped (default) 
 "10" Flash 
 "11" SelectMap  
 "01" Not Used 
[1] Reset: Async reset ‘1’= RESET 
[0] Transaction done 

MajorNumber[7:0] 0x1 R Version majorNumber 
MinorNumber[7:0] 0x2 R Version minorNumber 

Table D-3: RegFile memory location of the RCU Communication Module 
including Command/Status (ComStat) register  

Register name Address Description 
smap_direct_ctrl[7:0] 0x80000070 – 

0x8000007F 
Selectmap Control Lines 
[0] cclk (output) 
[1] rdwr_b (output) 
[2] init_b (input) 
[3] prog_b (output) 
[4] busy (input) 
[5] cs_b0 (output) 
[6] done (input) 
[7] cs_b1 (output – in case of 2 FPGAs) 

smap_direct_in[7:0] 0x80000080 – 
0x8000008F 

Selectmap data in 

smap_direct_out[7:0] 0x80000030 – 
0x8000003F 

Selectmap data out 

Table D-4: ARM stripe memory space for the selectMAP interface. 
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Physical Lines SelectMap mode Flash mode Normal operation 
mode 

dcs_data(31:16) Not used addr(15:0) data(31:16) 
dcs_data(15:0) (15) – cs_b 

(14) – busy 
(13) – done 
(12) – tri_select 
(7:0)  – selmap_data 

(15)    -  f_RynBy 
(14:8) -  addr(22:16)  
(7:0)   -  data(7:0) 

data(15:0) 

dcs_addr(15:0) - addr(15:0) addr(15:0) 
dcs_ctrl0 Cclk CE cstb_n 
dcs_ctrl1 rdwr_b WE rnw 
dcs_ctrl2 init_b F_reset (to RCU 

support FPGA) 
ack_n 

dcs_ctrl3 prog_b OE SEU Error 
dcs_ctrl4 msm_interrupt 
dcs_ctrl5 reset_n 
dcs_ctrl6 mode_select(0) 
dcs_ctrl7 mode_select(1) (TTCrx_ready for BusyBox) 

Table D-5: Definition of the physical lines on the DCS-RCU connector in the 
different modes of operation. 

 
Table D-6: Message Input Buffer (Instruction Memory) format. The Block 
End Marker is defined to be h”DD33”, while the End Marker is h”AA55”. 
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Command id Number of Words
37111519232731bit

”000000"Block Number

Status - [4] no end marker, [3] FSM error, [2] no bus grant, [1] no target answer, [0] no marker

Returned data #1 (if read command)

Returned data #2 (if read command)

...

Returned data #N (if read command)

word
Header

Command id Number of Words”000000"Block Number

Status - [4] no end marker, [3] FSM error, [2] no bus grant, [1] no target answer, [0] no marker

Returned data #1 (if read command)

Returned data #2 (if read command)

...

Returned data #N (if read command)  
Table D-7: Message Output Buffer (Result Memory) format. Number of 
Words includes the header and status word. If transaction is successful 
then the status-word is 0. 

Command name Description 
SINGLE_READ A single read operation 
SINGLE_WRITE A single write operation 
MULTI_READ Block read operation.  

The count parameter indicates the number of words of a certain 
format. 

MULTI_WRITE Block write operation.  
The count parameter indicates the number of words of a certain 
format.  

RANDOM_READ Random read operation 
RANDOM_WRITE Random write operation. 
FLASH_ERASEALL Erase the complete RCU Flash 
FLASH_ERASE_SECTOR Erase one sector of the RCU Flash 
FLASH_MULTI_ 
ERASE_SECTOR 

Erase multiple sequential sectors of the RCU Flash 

FLASH_READID Read the ID of the RCU Flash  
0 = Manufacturer ID  
1 = Device ID 

FLASH_RESET Reset the RCU Flash 
Table D-8: The commands that are available for the MessageBuffer. Note 
that the commands given with FLASH in front are only available when 
Flash mode is chosen. 

D.2.2 Version Change Log 

Version 1.0 (~april 2004)  

• Design is based on TRD DCS FW version 011.  

• MessageBuffer v1.0 (Torsten Alts original version), renamed RCU Communication Module.  

• Virtex driver for programming RCU FPGA included.  

 

Version 2.0 (~may 2005) 

• Updated RCU Communication Module with new header format.  

 

Version 2.1 (12.12.2005) 
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• Updated RCU Communication Module:  

• Corrected the bug of multiread/multiwrite that was introduced with new header format in v2.0.  

• Compressing possible (2x16, 3x10, 4x8).  

 

Version 2.2 (05.01.2006) 

• Updated RCU Communication Module:  

o Bugfix of reset state a state machine in rcu master module.  

o Bugfix in configuration controller on checking the command/address on multiread.  

o Bugfix in configuration controller on multiwrite with compressing.  

o Fix in the compressing so that the way to count words matches the requirements.  

o When compressing, writing/reading is switched from Big Endian to Little Endian.  

o Included version, mode select module and Flash interface in RCU communication Module.  

o Made new set of commands for Flash communication.  

o Synthesized using Mentor Graphics Precission - using an edf file in Quartus.  

o fw r command in software also resets certain fw modules on the DCS board.  

o Flash interface is reset whenever Flash mode is not selected.  

• Updated ARM stripe.  

• Removed Direct PIO Flash interface.  

 

Version 2.3 (27.02.2006) 

• Updated RCU Communication Module:  

o Multiplexer that chooses to send BunchCount Reset or EventCount Reset to RCU using the 
Aux4 line. Select by using memory mapped interface on DCS board. Reg addr 0x4A00 
selects BunchCount Reset. Reg addr 0x4A01 selects EventCount Reset.  

o Memory Mapped Version register added: 8b'day & 4b'Month & 4b'Year & 8b'MajorNumber 
& 8b'MinorNumber: Reg addr 0xBF00.  

o Interrupt (negative polarity) from Slow Control moved to RegFile Address of ARM stripe 
(0x80000060). Stripe Interrupt address IRW_INT_PLD[5].  

o ComStat register is made more robust using triple redundancy.  

 

Version 2.4 (19.03.2006)  

• RCU Communication Module:  

o Memory size is made generic.  

o Added tristate-select input for selectmap mode.  

o Increased timeout period of RCU memory mapped communication to 32 clks.  

o Increased length of we and ce pulses of Flash interface.  

o Changed tristate-select for Flash interface.  

o Increased wait time for Flash read.  

 

Version 2.5 (08.05.2006) 
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• VREG Module updated with new version from KIP.  

• Timing warnings removed with correct constraints settings.  

• Removed all "sensitivity list" warnings in Ethernet, jtag, vreg and I2C module.  

• All controllable outputs to RCU (except dcs_ctrl[7:6] = "00") is set to high impedance if 
output_enable_n = 1 is high.  

• output_enable_n is set by bit 4 in ComStat register.  

 

Version 2.6 (01.08.2006) 

• RCU Communication Module:  

o RCU Flash interface rebuilt to match latest version of RCU support FPGA FW (v1.3).  

o Improved error-handling in Flash interface. Checks for RynBy line, as well as bit q(5) of 
Flash-data.  

o Added Comstat(5) as DCS FW reset.  

o Changed rcu_data(15) in Flash mode to input f_rynBy.  

o Added a new generic variable that makes it possible to select the type of Flash of the RCU 
Motherboard. BB = boot sector in the beginning, BT = boot sector at the end.  

 

Version 2.61 (Trigger-OR) 

• Pinning on DCS-RCU connector changed to match Trigger-OR board.  

• Added sm_enable register that is enabled by writing to 0xBF01.  

• Bus data width reduced to 16 bits. The remaining 16 bits are used for SelectMAP interface.  

• SelectMAP interface can be accessed simultaneously as memory mapped interface.  

 

Version 2.62 (BusyBox) 

• Equal to v2.61 but with slightly different pinning on dcs-rcu (busy-logic) connector.  

 

Version 2.7 (03.08.2007) 

• Ethernet Module upgraded to increase speed of Ethernet link as described40. This upgrade also means 
updating the Kernel of the board.  

• Minor bugs in v2.6x corrected related to the RCU master module.  

 

Version 2.71 (Trigger-OR) 

• Same as v2.61, but including the upgrades given in v2.7.  

 

Version 2.72 (BusyBox) 

• Same as v2.62, but including the upgrades given in v2.7.  

                                              
40 http://frodo.nt.fh-koeln.de/~tkrawuts/update_howto/ 
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Version 2.8 (14.11.2007) 

• Bugfix concerning the mode settings. The error led the RCU support FPGA to go into selectmap 
mode when rebooting the DCS board. This also led the prog_b line to go low long enough to 
sometimes erase the Xilinx. The mode settings has been changed to: 

o "11"/"00" Memory mapped mode.  

o "01" Flash mode.  

o "10" Selectmap mode. 

• The most important is that memory mapped mode is now “11”. This is default state of these lines 
when the DCS board does not drive the lines during reboot.  

• Removed a register on the reset line (dcs_ctrl5) to avoid the 80 ns reset pulse whenever the DCS 
board reboots.  

• Added a shift-register on the mode and reset to make sure the lines are stable and asserted at least 8 
clks to increase robustness.  

• Added register 0xbf02 for setting the system back to old mode settings (by writing 0x01d) for 
backward compatibility.  

 

Version 2.81 (Trigger-OR) 

• Same as v2.71, but including the upgrades given in v2.8 (where only the correction of the reset bug 
matters in this setup).  

 

Version 2.82 (BusyBox) 

• Same as v2.72, but including the upgrades given in v2.8 (where only the correction of the reset bug 
matters in this setup). 

 

Version 2.83 (BusyBox) (15.05.2008) 

• Routed ttcrx_rdy out on dcs_ctrl7 (otherwise equal to 2.82). 

D.3 RCU main FPGA DCS Interface 

D.3.1 Tables 

Register name Address Type Description 
Global Reset 0x5300 T Issues a global reset to both FEC and RCU 
FEC Reset 0x5301 T Issues a reset to the FEC only 
RCU Reset 0x5302 T Issues a reset to the RCU Xilinx. 
arbiter_irq 0x5310 T Writing to this address will raise the interrupt 

flag to the arbiter. 
Grant[1:0] 0x5311 R [0] SIU grant 

[1] DCS grant 
Table D-9: List of registers that can be accessed externally. 
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D.3.2 Version Change Log 

Version 0.1 (~Oct 2007) 

• First proper version of the RCU main FPGA DCS interface. 

 

Version 0.2 (14.11.2007) 

• Adapted to match new mode settings of dcs fw v2.8. For backward compatibility, the old normal 
mode setting is still valid. 

 

Version 0.3 (12.02.08) 

• Added seu error line from the RCU support FPGA as an input. Inverted it and masked it with mode 
pins.  

• Added reset registers: Global, fec & rcu.  

• Changed the register addresses for the grant and interrupt.  

• Added we for msm module and separate data input from msm module. 

D.4 PHOS Board Controller 

D.4.1 Tables 

Register name Addr. Type Description 
UNLOCK 0x0 RW One bit unlock register for writing to read only regs for 

testing.  
0: Locked 
1: Unlocked 

L0CNT[15:0] 0x0B R(W) Number of L0 triggers received 
L2CNT[15:0] 0x0C R(W) Number of L2a triggers received 
SCLKCNT[15:0] 0x0D R(W) Sampling clock counter 
SLOWCTR_ERR 
[7:0] 

0x0E R Number of timeout situations in Slow Control  

CSR0[11:0] 0x11 RW Interrupt Mask Register: 
Default value = 0x1FF 
[11] HV Update Mode. 
 0 = The Board Controller updates DAC with 
 update_hv command. 
 1 = The Board Controller continuously updates 
 DACs 
[10] Conversion Mode. 
 0 = The Board Controller reads the content of the 
 monitor ADC with the STCNV command 
 1 = monitor ADC converts continuously  
[9:8]  Error Mask. These two bits mask the assertion of 
 the Error line. This line is asserted with the 
 flags registered in CSR1[9:8] 
 0 = the error is masked 
 1 = the error asserts the line 
[7:0] Interrupt Mask. These bits mask the bits of 
 CSR1[7:0] for the assertion of the Interrupt line 
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Register name Addr. Type Description 
CSR1[13:0] 0x12 R Error Status Register: 

Default value = 0x0000 
[13] Value of Slow Control Interrupt  line 
[12] Value of ALTRO bus Error line 
[11] Slow Control Instruction Error  
[10] ALTRO error: Registered value of ALTRO bus 
 error line 
[9] ALTRO bus Instruction Error (to Board Controller) 
[8] Parity error of ALTRO bus 20 MSB 
[7] Missing Sampling Clock 
[6] ALTRO Power, Digital 4.2V & 3.3V and Bias 
 Supply Error 
[5] Shaper +6.0V Power Supply Error 
[4] 4.2 V or 3.3 V digital currents higher than 
 thresholds. 
[3] 4.2 V or 3.3 V digital voltages lower than 
 thresholds. 
[2] 4.0 V, +6.0 V, -6.0 V, 13.5 V analog currents 
 higher than threshold. 
[1] 4.0 V, +6.0 V, -6.0 V, 13.5 V analog voltages 
 lower than threshold. 
[0] Temp1, Temp2 or Temp3 higher than threshold. 

CSR2[15:0] 0x13 RW Status and Configuration  
Default value = 0x013F 
[15:11] Hardware Address (read only) 
[10] Card Isolated 
[9:8] Number of times a ADC threshold violation must 
 occur before it is reported 
[7] Not Used 
[6] Enables Hamming correction on HVDAC values 
 and Thresholds. 
[5] Enables DAC clock 
[4] Enables Sampling Clock 
[3] Enables Readout Clock 
[2] Power Switch for Shaper Power Regulator 
[1] Power switch for Bias Power Regulator 
[0] Power switch for ALTRO Power Regulator 

CSR3[15:0] 0x14 RW Status and Configuration  
Default value = 0x2220 
[15] This bit is set to 1 when the Board Controller has 
 completed the transaction with the mADC. It is 
 reset at the beginning of every transaction. 
[14:8] Scevl timeout value. Max num of clks for each 
 transaction on the ALTRO bus when Board 
 Controller is master. 
[7:0] rdclk / sclk warning ratio 

DEBUG[1:0] 0x15 R [1]  Value of Slow Control data line 
[0] Value of test_mg input 

CNTLAT 0x16 T Latch L0, L2, SCLK counters 
CNTCLR 0x17 T Clear L0, L2, SCLK counters 
CSR1CLR 0x18 T Clear Error Status Register 
ALRST 0x19 T Reset all the ALTROs 
BCRST 0x1A T Reset Board Controller to default values 
STCNV 0x1B T Start Conversion / Readout monitor ADC  
SCEVL 0x1C T Scan Event-length registers in all ALTRO channels 
EVLRDO 0x1D T Start readout of Event Length Hitmap register. 
UPDATEHV 0x1E T Update HV 
BCVERSION[15:0] 0x20 R Board Controller Version 
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Register name Addr. Type Description 
VTS_HIGH[14:0] 0x21 R(W) Voltage Temperature Status register: 

[0] TEMP1 over th 
[1] D4V0 over th 
[2] D4V0C over th 
[3] D3V3 over th 
[4] D3V3C over th 
[5] TEMP2 over th 
[6] A6nV0 over th 
[7] A6nV0C over th 
[8] A6pV0 over th 
[9] A6pV0C over th 
[10] TEMP3 over th 
[11] A3V3 over th 
[12] A3V3C  over th 
[13] A13V0 over th 
[14] A13V0C over th 

VTS_LOW[14:0] 0x22 R(W) Voltage Temperature Status register: 
[0] TEMP1 under th 
[1] D4V0 under th 
[2] D4V0C under th 
[3] D3V3 under th 
[4] D3V3C under th 
[5] TEMP2 under th 
[6] A6nV0 under th 
[7] A6nV0C under th 
[8] A6pV0 under th 
[9] A6pV0C under th 
[10] TEMP3 under th 
[11] A3V3 under th 
[12] A3V3C  under th 
[13] A13V0 under th 
[14] A13V0C under th 

TH_HMGERR_HI
GH[14:0] 

0x23 R(W) Double hamming errors found in ADC high threshold 
memory . 

TH_HMGERR_LO
W[14:0] 

0x24 R(W) Double hamming errors found in ADC low threshold 
memory. 

HV_FB1[15:0] 0x25 R(W) Compared outputs from DAC for APD 
[7:0]  APD 16 – APD 23 
[15:8]  APD 7 – APD 0 
0: DAC not set/Wrong 
1: DAC set/Correct 

HV_FB2[15:0] 0x26 R(W) Compared outputs from DAC for APD 
[7:0]  APD 15 – APD 8 
[15:8]  APD 24 – APD 31 
0: DAC not set/Wrong 
1: DAC set/Correct 

HV_HVHMGERR1 
[15:0] 

0x27 R(W) Double hamming errors for the following: 
[7:0]  APD 16 – APD 23 
[15:8]  APD 7 – APD 0 

HV_HVHMGERR2 
[15:0] 

0x28 R(W) Double hamming errors for the following: 
[7:0]  APD 15 – APD 8 
[15:8]  APD 24 – APD 31 

ADC_DIFF[14:0] 0x29 RW Sets which ADC values that should be treated as currents 
in the ADC value and ADC threshold memory. In practice 
this is a diff between Vprevious and Vcurrent 
Default Value: 0x5294 

ADC_DIFF_DIR 
[14:0] 

0x2A R(W) Sets the expected direction of the current for the current 
measurements given by ADC_DIFF register.  
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Register name Addr. Type Description 
0: Current = Vprevious - Vcurrent  
1: Current = Vcurrent – Vprevious  
Default Value: 0x0080 

LAST_ADD_MSB 
[15:0] 

0x2C R Debug register for ALTRO bus transaction 
[15:12] Value of GTL drivers (oeba_l,  
 oeba_h, ctr_in, ctr_out) of valid  
 Transaction 
[11:8] Value of GTL drivers of not valid  
 transaction 
[7:4] MSB of last valid address  
 received. 
[3:0] MSB of last not valid address  
 Received 

LAST_VALID_ADD 
[15:0] 

0x2D R Debug register for ALTRO bus transaction: 
LSB of last valid address received at the FEC 

LAST_NOTVALID_ 
ADD[15:0] 

0x2E R Debug register for ALTRO bus transaction: 
LSB of the last not valid address received at the FEC. 

    
ADC Min 
Threshold 
Memory[14:0] 

0x30 – 
0x3E 

RW Min Threshold for the ADCs 
[15:11] Hamming code 
[10] 0: Threshold for Voltage 
 1: Threshold for Current  
[9:0] Data value 

ADC Max 
Threshold 
Memory[14:0] 

0x40 – 
0x4E 

RW Max Threshold for the ADCs 
[15:11] Hamming code 
[10] 0: Threshold for Voltage 
 1: Threshold for Current  
[9:0] Data value 

ADC Data 
Memory[9:0] 

0x50 – 
0x5E 

RW Data values from the ADCs 
[9:0] Data value 

HV DAC settings 
memory 
[14:0] 

0x60 – 
0x7F 

RW High voltage bias value for APDs 
0x60-0x67: APD 23 down to APD 16 
0x68-0x6F: APD 0 to APD 7 
0x70-0x77: APD 8 to APD 15 
0x78-0x7F: APD 31 down to APD 24 
 
[15:11]  Hamming code 
[10] Don’t care (not used) 
[9:0]  Value to Write 

Table D-10:  List of registers that can be accessed externally. Note that the 
registers marked with “R(W)” can be written to when unlock bit is set. 
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Memory location name Addr. Description 
TEMP1-MIN_TH 0x30 Minimum Temperature Threshold for ADC IC13 

Default Data Value: 0x0 (disabled) 
D4V0_MIN_TH 0x31 Minimum 4.0V Digital Voltage Threshold 

Default Data Value: 0x1D8 (= 3.8 V) 
D4V0C_MIN_TH 0x32 Minimum 4.0V Digital Current Threshold 

Default Value: 0x0 (disabled) 
Alternatively Voltage level used for current calc.  

D3V3_MIN_TH 0x33 Minimum 3.3V Digital Voltage Threshold 
Default Data Value: 0x1C2 (= 2.9 V) 

D3V3C_MIN_TH 0x34 Minimum 3.3V Digital Current Threshold 
Default Value: 0x0 (disabled) 
Alternatively Voltage level used for current calc. 

TEMP2-MIN_TH 0x35 Minimum Temperature Threshold for ADC IC15 
Default Value: 0x0 (disabled) 

A6nV0_MIN_TH 0x36 Minimum -6.0V Analog Voltage Threshold 
Default Data Value: 0x170 (= -6.4 V) 

A6nV0C_MIN_TH 0x37 Minimum  -6.0V Analog Current Threshold 
Default Value: 0x0 (disabled) 
Alternatively Voltage level used for current calc. 

A6pV0_MIN_TH 0x38 Minimum 6.0V Analog Voltage Threshold 
Default Data Value: 0x1E8 (= 5.6 V) 

A6pV0C_MIN_TH 0x39 Minimum 6.0V Analog Current Threshold 
Default Value: 0x0 (disabled) 
Alternatively Voltage level used for current calc. 

TEMP3-MIN_TH 0x3A Minimum Temperature Threshold for ADC IC14 
Default Value: 0x0 (disabled) 

A3V3_MIN_TH 0x3B Minimum. 3.3V Analog Voltage Threshold 
Default Value: 0x1C2 (= 2.9 V) 

A3V3C_MIN_TH 0x3C Minimum 3.3V Analog Current Threshold 
Default Value: 0x0 (disabled) 
Alternatively Voltage level used for current calc 

A13V0_MIN_TH 0x3D Minimum 13.0V Analog Voltage Threshold 
Default Value: 0x1D6 (= 12.6 V) 

A13V0C_MIN_TH 0x3E Minimum 13.0V Analog Current Threshold 
Default Value: 0x0 (disabled) 
Alternatively Voltage level used for current calc 

Table D-11: ADC Minimum Threshold Value Memory. The conversion 
factors are given in Table D-13 
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Memory location name Addr. Description 
TEMP1-MAX_TH 0x40 Maximum Temperature Threshold for ADC IC13 

Default Data Value: 0xA0 (= 40°C) 
D4V0_MAX_TH[ 0x41 Maximum 4.0V Digital Voltage Threshold 

Default Value: 0x0 (disabled) 
D4V0C_MAX_TH 0x42 Maximum 4.0V Digital Current Threshold 

Default Value: 0x00C (=0.36 A) 
Alternatively Voltage level used for current calc.  

D3V3_MAX_TH 0x43 Maximum 3.3V Digital Voltage Threshold 
Default Value: 0x0 (disabled) 

D3V3C_MAX_TH 0x44 Maximum 3.3V Digital Current Threshold 
Default Value: 0x011 (= 0.73 A) 
Alternatively Voltage level used for current calc. 

TEMP2-MAX_TH 0x45 Maximum Temperature Threshold for ADC IC15 
Default Data Value: 0xA0 (= 40°C) 

A6nV0_MAX_TH 0x46 Maximum -6.0V Analog Voltage Threshold 
Default Value: 0x0 (disabled) 

A6nV0C_MAX_TH 0x47 Maximum  -6.0V Analog Current Threshold 
Default Value: 0x00F (=0.44 A) 
Alternatively Voltage level used for current calc. 

A6pV0_MAX_TH 0x48 Maximum 6.0V Analog Voltage Threshold 
Default Value: 0x0 (disabled) 

A6pV0C_MAX_TH 0x49 Maximum 6.0V Analog Current Threshold 
Default Value: 0x016 (= 0.764 A) 
Alternatively Voltage level used for current calc. 

TEMP3-MAX_TH 0x4A Maximum Temperature Threshold for ADC IC14 
Default Data Value: 0xA0 (= 40°C) 

A3V3_MAX_TH 0x4B Maximum. 3.3V Analog Voltage Threshold 
Default Value: 0x0 (disabled) 

A3V3C_MAX_TH 0x4C Maximum 3.3V Analog Current Threshold 
Default value: 0x014 (= 0.858 A) 
Alternatively Voltage level used for current calc 

A13V0_MAX_TH 0x4D Maximum 13.0V Analog Voltage Threshold 
Default Value: 0x0 (disabled) 

A13V0C_MAX_TH 0x4E Maximum 13.0V Analog Current Threshold 
Default Value: 0x00F (= 0.334 A) 
Alternatively Voltage level used for current calc 

Table D-12: ADC Maximum Threshold Value Memory. The conversion 
factors are given in Table D-13. 
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Memory 
location 
name 

Addr. Description Conv. factor 

TEMP1 0x50 Temperature for ADC IC13 0.25°C * ADC 
counts 

D4V0 0x51 4.0V Digital Voltage 8.04mV * ADC 
counts 

D4V0C 0x52 4.0V Digital Current 
Alternatively Voltage level used for current calc.  

29.8mA * ADC 
counts 

D3V3 0x53 3.3V Digital Voltage 6.44 mV * ADC 
counts 

D3V3C 0x54 3.3V Digital Current  
Alternatively Voltage level used for current calc. 

42.9 mA * ADC 
counts 

TEMP2 0x55 Temperature for ADC IC15 0.25°C * ADC 
counts 

A6nV0 0x56 -6.0V Analog Voltage  4.88mV * ADC 
counts / 1000 - 8.2V 

A6nV0C 0x57 -6.0V Analog Current  
Alternatively Voltage level used for current calc. 

29.3mA * ADC 
counts 

A6pV0 0x58 6.0V Analog Voltage 
Default Data Value: 0x1E8 (= 5.6 V) 

11.4 mV * ADC 
counts 

A6pV0C 0x59 6.0V Analog Current  
Alternatively Voltage level used for current calc. 

34.73 mA * ADC 
counts 

TEMP3 0x5A Temperature for ADC IC14 0.25°C * ADC 
counts 

A3V3 0x5B 3.3V Analog Voltage 6.44 mV * ADC 
counts 

A3V3C 0x5C 3.3V Analog Current 
Alternatively Voltage level used for current calc 

42.9 mA * ADC 
counts 

A13V0 0x5D 13.0V Analog Voltage 26.8 mV * ADC 
counts 

A13V0C 0x5E 13.0V Analog Current  
Alternatively Voltage level used for current calc 

22.3 mA * ADC 
counts 

Table D-13: ADC Value Memory. The current conversion factors are only 
correct if calculation of current is enabled for the given value.  

Hamming bit  
h(0) d(0) ⊕ d(1) ⊕ d(3) ⊕ d(4) ⊕ d(6) ⊕ d(8) ⊕ d(10) 
h(1) d(0) ⊕ d(2) ⊕ d(3) ⊕ d(5) ⊕ d(6) ⊕ d(9) ⊕ d(10) 
h(2)  d(1) ⊕ d(2) ⊕ d(3) ⊕ d(7) ⊕ d(8) ⊕ d(9) ⊕ d(10) 
h(3)  d(4) ⊕ d(5) ⊕ d(6) ⊕ d(7) ⊕ d(8) ⊕ d(9) ⊕ d(10) 
h(4)  h(0) ⊕ h(1) ⊕ h(2) ⊕ h(3) ⊕ d(0) ⊕ d(1) ⊕ d(2) ⊕ d(3) ⊕ d(4) ⊕ d(5) ⊕ d(6) ⊕ d(7) 

⊕ d(8) ⊕ d(9) ⊕ d(10) 
Table D-14: Hamming encoding used in the Board Controller. h is the 5 bit 
hamming vector and d is the 11 bit data vector. 

D.4.2 Version Change Log 

Version 3.0 (16.08.2007) 

• Functionally based on PHOS PCM v2.x (hence is the version number starting at 3.0).  

• Two command interfaces.  

o ALTRO bus interface.  
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o FC bus interface (Modified I2C interface). 

• Setting of DACs for bias voltage for High Voltage region.  

• Interface to 3 ADCs for verifying voltage and current-levels as well as temperatures.  

• Programmable thresholds for flagging errors in ADC values.  

• Monitoring error inputs from Power Regulators.  

• Interrupt line to RCU for errors of a severity level craving urgent measures.  

• Possible to set the FEC in standby mode by turning off voltage regulators and not reporting any 
warnings/errors.  

• Radiation environment precautions:  

o Hamming coded ADC threshold settings.  

o Hamming coded DAC values.  

o TMR of configuration/status register.  

• Configurable automatic update of DAC.  

• Thresholds, ADC values and DAC values stored in memories.  

• Main functional changes from HUST PCM v2.x.  

o Removed of USB communication.  

o Removed of Board ID register.  

o Included Hamming encoding and TMR of static registers/memories.  

o Some register remapping.  

o Thresholds and ADC values stored in memories.  

 

Version 3.1 (11.09.2007) 

• Added high and low ADC threshold memory.  

• Added new module for verifying ADC values.  

• Remapped most register adresses.  

• Configurable number of times (1-3) of same threshold error before interrupt is flagged.  

• Added two registers to decide if adc values will be treated as current or voltages.  

• The continuously reading of ADC default disabled.  

• Removed the error testing for illegal addresses (all addresses are ok, but will not return anything if not 
defined).  

• Added an unlock register to make it possible to overwrite certain status registers for debug purposes.  

• Changed default state of Slow Control Slave dout from 0 to 1 (Bug introduced in 3.0).  

• Bugfix of DAC interface in case of hamming error in last channel of each DAC.  

 

Version 3.2 (03.10.2007) 

• Problem with Slow Control Communication attempted solved by making the slave more robust:  

o The slow control now decodes all info on the FC bus no matter if the card address is correct 
or not. This is done to make the slow control busy hence masking it for any fake start 
conditions on the bus. The sda_out line and the internal we signal is masked with a card 
address ok signal.  
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o Added timeout counters for Slow Control Transactor and Receiver.  

o Rewrote state machine in FC bus slave to reduce the amount of combinatorics.  

o Added sda_out line to csr3 register for debug.  

• Rewrote state machines in ADC interface to reduce the amount of combinatorics.  

 

Version 3.3 (17.10.2007) 

• Included support for Sparse Readout:  

o Exact copy of TPC version with a minor change to account for the less ALTROs in PHOS 
and the special ALTRO addressing of PHOS (0, 2, 3 & 4).  

o Hitmap transmitted by the use of dstb that is a gated version of the readout clock.  

o Added the needed functionality on the driver module to support the Board Controller being 
ALTRO bus master.  

o Added the needed registers addresses for Sparse Readout. Exact copy of TPC version  

o Rewrote ALTRO interface to one single module with the aim of making it more robust.  

o Minor change in drivers module.  

• Added another timeout counter for the Slow Control Module and made a count of timeout conditions 
available in the register map.  

• Added a debug register with information on the state of the sda line and test_mg input.  

 

Version 3.4 (31.10.2007) 

• Added debug counters and registers in the ALTRO interface module:  

• Counters for number of received strobes, and number of generated acks.  

• Information stored concerning the last acked address, and last address not acked.  

• Added metastability filters on all control signals and address on the ALTRO Bus in an attempt to 
make it even more robust.  

• The problem with the occasional timeout on the ALTRO bus is still present, but testing has shown the 
time-out occurs when the Board Controller receives not valid addresses (for some reason). This 
proves that with a high certainty the problem is not related to the Board Controller.  

 

Version 3.5 (30.03.2008) 

• Added registers on the GTL bus drivers to remove the possibility of glitches on the drivers.  

• Changed start condition of the readout command detect state machine to make it behave better in ppr 
simulations.  

• Removed debug counters and metastability filter on ALTRO interface, since it had no effect. 
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D.5 RCU support FPGA firmware 

D.5.1 Tables 

Register name Address Type Description 
Command(15:0) 0xB000 W Writing to this register triggers a command 

execution. See Table D-16:  for available 
commands 

Command_SM(15:0) 0xB002 W Writing to this register triggers a command 
execution for the selectMAP. See Table D-17:  for 
available commands 

Actel_Reset 0xB003 T Same as RCU_Reset but only for RCU support 
FPGA 

Status(11:0) 0xB100 R Read: Status Register. 
(11:8)  Stop Power Up Code 
(7)  Null pointer in Flash 
(6)  Config Controller busy  
(5)  Not Used 
(4)  Selectmap IF busy 
(3:0)  (Last) Active Cmd:   
  hA – Init Config 
  hB – Scrub 
  hC – Scrub Cont 
  hD – Rb Frame   
  hE – Rb Frame Cont 

Error(7:0) 0xB101 R Read: Error Register. 
(7)  Selectmap RAM Parity Error  
(6)  Flash RAM Parity Error 
(5)  Not Used 
(4)  Not Used 
(3)  Not Used 
(2)  Smap Unknown Cmd 
(1)  Smap busy Not Asserted Error 
(0)  Smap Done Failed  

Version_Number(15:0) 0xB102 R Firmware version:  
(15:8)  Major Number 
(7:0)  Minor Number 

Input_Data(15:0) 0xB103 RW Data to write to RCU support FPGA. Used as 
configuration data for specifics commands, 
decided by the command how it should be 
interpreted 

RB_ErrCnt(15:0) 0xB104 R Number of Errors found by readback and 
verification of Xilinx Configuration Memory 

RB_Err_FrameNumber 
(11:0) 

0xB105 R Last frame number with error (as given by the 
frame sequence stored in the Flash Memory 
Device) 

RB_FrameNumber 
(11:0) 

0xB106 R Last frame being verified (as given by the frame 
sequence stored in the Flash Memory Device) 

RB_numOfCycles(15:0) 0xB107 R Number of times a scrubbing cycle or a complete 
Frame by Frame readback cycle (all frames) has 
been done. 

Stop Power Up Code 0xB112 W Writing X”A” to this register prevents the RCU 
support FPGA from trying to automatically 
configure the Xilinx if sm_done is low 
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Register name Address Type Description 
Flash_Interface 
_Memory(15:0) 

0xB200 – 
0xB3FF 

RW 512x16 RAM block used for Flash Memory Device 
Communication 

SelectMAP_Interface 
_Memory(15:0) 

0xB400 – 
0xB5FF 

RW 512x16 RAM block used for selectMAP Bus 
Communication 

Table D-15: Externally accessible registers.  

Command Value Data register (0xB103) Description 
CLEAR_ERROR 0x0001 Not Used Clears error register, and brings FW 

out of an illegal state. Must be done if 
error has occurred. 

CLEAR_STAT 0x0002 Not Used Clears status register and counters  
INIT_CONFIG 0x0004 Not Used Initial configuration of Xilinx from 

Flash 
SCRUB 0x0010 Not Used  Scrub Xilinx one time. 
SCRUB_CONT 0x0020 Num of times to run. If 

zero then run 
continuously until abort. 

Scrub Continuously from Flash  

RBFRAME 0x0100 Not Used Read back single frame from Xilinx 
and clear error if found, always 
starting with first frame stored in Flash 
Memory Device, and continue with 
next frame on subsequent executions. 

RBFRAME_CONT 0x0200 Num of times to run. If 
zero then run 
continuously until abort. 

Continuously read back Xilinx and 
clear error if found 

ABORT 0x8000 Not Used Aborts ongoing operation 
Table D-16: Main Command Register (0xB000). 

Command Value Data register 
(0xB103) 

Description 

INIT_XIL 0x01 Not Used Do init procedure of Xilinx. Will erase 
the content of the Xilinx configuration 
memory. 

STARTUP_XIL 0x02 Not Used Do startup procedure of Xilinx (toggle 
cclk a number of times while cs_b is 
low) 

WRITE_XIL 0x04 Data to be written Write a 16 bit word to selectMAP IF in 
two subsequent 8 bit writes. 

READ_XIL 0x08 Number of 16 bit words to 
read. If this register is 0, 
only 1 read op is 
performed.  

Read 16 bits of data from the 
selectMAP Bus. (Working only if a 
correct command sequence has been 
written to the Xilinx first) 

ABORT_XIL 0x10 Not Used Issue abort sequence 
Table D-17: SelectMAP Command Register (0xB002). 

D.5.2 Version Change Log 

Version 1.0 (Dec 2005) 

• The first working revision of the RCU support FPGA firmware.  

• Flash interface that supports all atomic commands included, including a special verify method.  

• Initial configuration.  

• Direct selectMAP mode tested and verified.  
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Version 1.1 (13.02 2006) 

• Bug fix in direct Flash mode - tested and verified working.  

• Version register added. address = hB200 (b8'Majornumber & b8'Minornumber).  

• Rearranged Xilinx programming to handle 16 bits words instead of 32 bit words as Flash reads only 
16 bits and speeded up the process.  

• Read of Xilinx selectMAP interface is verified working using normal operation mode.  

• Verify Flash method removed.  

• Status register updated with more status/error information.  

• If circuit comes into error condition, then everything is halted until error condition is cleared. (0xB000 
= 0x0).  

• Corrected a bug in the memory mapped interface that made the circuit hang after a "no target answer" 
transaction.  

• Added continuously scrubbing and abort command.  

 

Version 1.2 (25.04 2006) 

• Flash interface and selectMAP interface can be generically selected to be included. 

• Scrubbing of complete configuration supported:  

o Single.  

o Continuous until abort.  

o Continuous # number of cycles.  

• Frame by frame readback, verification and correction supported:  

o Single step. One frame at the time.  

o Continuous until abort. Runs complete cycles.  

o Continuous # number of times. Runs complete cycles.  

• Counters for Number of Readback Verification errors and number of cycles added.  

• Register for frame with last RB error added. (As given by the sequence the frames are stored in the 
Flash).  

• Register for frame being verified added. (As given by the sequence the frames are stored in the Flash).  

• Status register rearranged.  

• Error register added.  

• Command register rearranged.  

• Clear error and clear status added.  

• Added SelectMAP Command register.  

• Added Flash Command register.  

• Flash interface (and DCS control) on RCU support FPGA removed due to space limitations. Can only 
read Flash, while the DCS board handles the rest.  

• Removed delay when in between scrub cycles.  

 

Version 1.3 (28.08 2006) 
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• Corrected critical timing issues when doing frame by frame read-back verification.  

• Cleaned up state machine in Configuration Controller module.  

• Added LUTs and pipelined the readback error counter.  

• Synchronized the input control lines for the selectMAP bus.  

• Relaxed the timing on the selectMAP interface.  

• A bit slower operation – but timing is now good.  

• Removed register for reading the last address being written to.  

• Changed reset register address to 0xB003.  

• Fixed a bug when clearing error register.  

• Set continuous scrubbing to read pointer between scrub cycles to refresh registers.  

• The memories are not in the data-path from the Flash Memory Device to the SelectMAP bus anymore 
– they are only readable from the DCS board.  

• Added power up detection module that start initial configuration.  

• Added stop code register for stopping power up detection module from trying to reconfigure.  

• Added address generator module to save area.  

• Added new generic variable to select type of Flash Memory Device (BB or BT).  

• Added new memory mapped interface module without support for Flash interface on RCU support 
FPGA (selected by generics).  

• Added synchronizers for the control lines of the Flash Memory Device in direct Flash mode to deal 
with timing issues.  

• Added f_rynby line to DCS board in direct Flash mode.  

• Added output seu_error on dcs_ctrl3 in normal operation mode.  

 

Version 1.4 (14.11.2007) 

• Bugfix concerning the mode settings. The error led the RCU support FPGA to go into selectMAP 
mode when rebooting the DCS board. This also led the prog_b line to go low long enough to 
sometimes erase the Xilinx.  

• The seu_error flag is inverted so that default state is high.  

• Extra robustness has been added to reset line so that the reset must be low for at least 125 ns for the 
RCU support FPGA to reset. This is done to make sure glitches do not reset the RCU support FPGA.  

• Corrected a bug that made the scrubbing counter in continuous scrubbing mode increment by 2, 
instead of 1. 
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D.6 Trigger Receiver Module 

D.6.1 Trigger Receiver Firmware Tables 

Register name Address Type Description 
Control[23:0] 0x4000 RW [0] Serial B channel on/off  Default: 1 

[1] Disable_error_masking  0 
[2] Enable RoI decoding  0 
[3] L0 support     1 
[4:7] (Not Used) 
[8] L2a FIFO storage mask  1 
[9] L2r FIFO storage mask  1 
[10] L2 Timeout FIFO storage mask 1 
[11] L1a message mask   1 
[12] Enable Input Trigger Mask  0 
[13:15] (Not Used) 
[16] Bunch_counter overflow      - 
[17] Run Active     - 
[18] busy (receiving sequence)  - 
[19] Not Used 
[23:20] CDH version    0x2 

Module Reset 0x4001 T Reset Module 
RoI_Config1[17:0] 0x4002 RW Definition of what region of interest the RCU is a 

part of (depends on the sector). Bit 17:0  
RoI_Config2[17:0] 0x4003 RW Definition of what region of interest the RCU is a 

part of (depends on the sector). Bit 35:18 
Reset Counters 0x4004 T Write to this registers will reset the counters in the 

module 
Issue Testmode 0x4005 T Debug: Issues testmode sequence. Note that 

serialB channel input MUST be disabled when 
using this feature.  

L1_Latency[15:0] 0x4006 RW [15:12] Uncertainty region +- N. default value 0x2 
(50 ns) 
[11:0] Latency from L0 to L1, default value 0x0D4 
(5.3 us)  

L2_Latency[31:0] 0x4007 RW [15:0] Max Latency from BC0 to L2, default value 
0x4E20 (500 us) 
[31:16] Min Latency from BC0 to L2, default value 
0x0C80 (80 us) 

RoI_Latency[31:0] 0x4009 RW [15:0] Max Latency from BC0 to RoI msg 
[31:16] Min Latency from BC0 to RoI msg 

L1_msg_latency[31:0] 0x400A RW [15:0] Max Latency from BC0 to L1 msg, default 
value 0x0028 (1 us) 
[31:16] Min Latency from BC0 to L1 msg, default 
value 0x0F8 (6,2 us) 

Pre_pulse_counter[15:0] 0x400B R Number of decoded pre-pulses. 
BCID_Local[11:0] 0x400C R Number of bunchcrossings at arrival of L1 trigger. 
L0_counter[15:0] 0x400D R Number of L0 triggers  
L1_counter[15:0] 0x400E R Number of L1 triggers 
L1_msg_counter[15:0] 0x400F R Number of successfully decoded L1a messages 
L2a_counter[15:0] 0x4010 R Number of successfully decoded L2a messages 
L2r_counter[15:0] 0x4011 R Number of successfully decoded L2r messages 
RoI_counter[15:0] 0x4012 R Number of successfully decoded RoI messages 
Bunchcounter[11:0] 0x4013 R Debug: Number of bunchcrossings  
hammingErrorCnt[31:0] 0x4016 R [15:0] Number of single bit hamming errors [31:16] 

Number of double bit hamming errors 
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Register name Address Type Description 
ErrorCnt[31:0] 0x4017 R [15:0] Number of message decoding errors  

[31:16] Number of errors related to sequence and 
timeouts. 

Buffered_events[4:0] 0x4020 R Number of events stored in the FIFO.  
DAQ_Header01[31:0] 0x4021 R Latest received DAQ Header 1 
DAQ_Header02[31:0] 0x4022 R Latest received DAQ Header 2 
DAQ_Header03[31:0] 0x4023 R Latest received DAQ Header 3 
DAQ_Header04[31:0] 0x4024 R Latest received DAQ Header 4 
DAQ_Header05[31:0] 0x4025 R Latest received DAQ Header 5 
DAQ_Header06[31:0] 0x4026 R Latest received DAQ Header 6 
DAQ_Header07[31:0] 0x4027 R Latest received DAQ Header 7 
Event_info[17:0] 0x4028 R Latest Received Event information: 

[0] RoI enabled 
[1] Region of Interest announced (=ESR) 
[2] RoI received 
[3] Within region of interest 
[4:7] Calibration/SW trigger type (= RoC) 
[8] Software trigger event 
[9] Calibration trigger event 
[10] Event has L2 Reject trigger 
[11] Event has L2 Accept trigger 
[12] Include payload 
[17:13] SCLK phase when (L0/L1)trigger arrives 

Event_error[24:0] 0x4029 R Latest Received Event error conditions: 
[0] Serial B Stop Bit Error 
[1] Single Bit Hamming Error Individually Addr. 
[2] Double Bit Hamming Error Individually Addr. 
[3] Single Bit Hamming Error Broadcast. 
[4] Double Bit Hamming Error Broadcast. 
[5] Unknown Message Address Received 
[6] Incomplete L1a Message 
[7] Incomplete L2a Message 
[8] Incomplete RoI Message  
[9] TTCrx Address Error (not X”0003”) 
[10] Spurious L0  
[11] Missing L0 
[12] Spurious L1 
[13] Boundary L1 
[14] Missing L1 
[15] L1a message arrives outside legal timeslot 
[16] L1a message missing/timeout 
[17] L2 message arrives outside legal timeslot 
[18] L2 message missing/timeout 
[19] RoI message arrives outside legal timeslot 
[20] RoI message missing/timeout 
[21] Prepulse error (=0; possible future use) 
[22] L1a message content error 
[23] L2 message content error 
[24] RoI message content error 

L1_MessageHeader[11:0] 0x4030 R Debug: Latest received L1a message 
L1_MessageData1[11:0] 0x4031 R Debug: Latest received L1a message 
L1_MessageData2[11:0] 0x4032 R Debug: Latest received L1a message 
L1_MessageData3[11:0] 0x4033 R Debug: Latest received L1a message 
L1_MessageData4[11:0] 0x4034 R Debug: Latest received L1a message 
L2aMessageHeader[11:0] 0x4035 R Debug: Latest received L2a Message 
L2aMessageData1[11:0] 0x4036 R Debug: Latest received L2a Message 
L2aMessageData2[11:0] 0x4037 R Debug: Latest received L2a Message 
L2aMessageData3[11:0] 0x4038 R Debug: Latest received L2a Message 
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Register name Address Type Description 
L2aMessageData4[11:0] 0x4039 R Debug: Latest received L2a Message 
L2aMessageData5[11:0] 0x403A R Debug: Latest received L2a Message 
L2aMessageData6[11:0] 0x403B R Debug: Latest received L2a Message 
L2aMessageData7[11:0] 0x403C R Debug: Latest received L2a Message 
L2rMessageHeader[11:0] 0x403D R Debug: Latest received L2r Message 
RoIMessageHeader[11:0] 0x403E R Debug: Latest received RoI Message 
RoIMessageData1[11:0] 0x403F R Debug: Latest received RoI Message 
RoIMessageData2[11:0] 0x4040 R Debug: Latest received RoI Message 
RoIMessageData3[11:0] 0x4041 R Debug: Latest received RoI Message 
FIFO_read_enable 0x4080 T Debug: Triggers a readout pulse to FIFO 
FIFO_DAQHeader[31:0] 0x4081 R Debug: Output of FIFO 

Table D-18: List of registers that can be accessed externally. Note that the 
registers marked debug can be excluded by setting the generic 
include_debug_registers to false, but during the development of HW/FW 
they come in handy for testing and verification. Excluding them will 
decrease the number of CLBs used by the module significantly 
(approximately 20% reduction for Xilinx Virtex-2 pro XC2VP7). 

 

Bit Name Type Explanation 
0 Enable Input  RW Enables or disables the Channel A and Channel B inputs. 

Default enabled 
1 Disable Error 

Masking 
RW This switch disables the masking of all triggers/messages 

received outside legal time windows. Default disabled. 
2 Enable RoI decoding RW Enables the check and verification of RoI messages. 

Default disabled 
3 L0 support RW Enables the L1a line decoder to decode either L0/L1a or 

only L1a. Default enabled L0 & L1a 
4:7 Not Used - - 
8 L2a FIFO storage 

mask 
RW 0: Events with L2a triggers are not stored in the FIFO 

1: Events with L2a triggers are stored in the FIFO. 
(default) 

9 L2r FIFO storage 
mask 

RW 0: Events with L2r triggers are not stored in the FIFO 
1: Events with L2r triggers are stored in the FIFO. 
(default) 

10 L2 Timeout FIFO 
storage mask 

RW 0: Events with L2 timeout are not stored in the FIFO 
1: Events with L2 timeout are stored in the FIFO. (default) 

11 L1a message mask  RW 0: Error situations concerning the L1a message are not 
reported 
1: Error situations are reported. (default) 

12 Enable trigger input 
mask 

RW 0: all triggers accepted (default) 
1: trigger sequences masked if ddl_rdy_rx is not set, 
meb_full is set or number of events equals 8 

13:15 Not Used - - 
16 Bunch_counter 

overflow 
R Overflow of Bunchcounter – no reception of bunchcount 

reset messages. 
0: ok 
1: overflow 

17 Run Active R Run Active as set by SOR and EOR events 
18 Busy R The module is busy receiving a trigger sequence 

0: not busy 
1: busy 

19 Not Used -  
23:20 CDH Version R Version of the CDH generated by the Trigger Module 

Table D-19: Definition of the control register. 
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Bit Name Explanation 
0 RoI Enabled Information if RoI decoding is enabled by user. 

0: disabled 
1: enabled 

1 Region of Interest 
announced 

True if the ESR bit is set in L1a message and the RoI decoding 
is enabled, this bit is set,  
0: RoI not announced or disabled 
1: RoI expected and enabled. 

2 RoI received True if a RoI message is received when RoI decoding is 
enabled. 
0: Not received or disabled. 
1: Received 

3 Within region of interest True if the received RoI message is matching the RoI config 
register. For TPC decoding this is the case if bit n is ‘1’ in both 
registers. 
0: Not within region of interest or RoI disabled. 
1: Within RoI and RoI enabled. 

4:7 Calibration/SW trigger 
type 

Equal to the RoC bits in L1a message, telling what kind of 
software/calibration trigger that is received. The only defined so 
far are SOR and EOR. 
0xE : Start of Run 
0xF : End of Run 

8 Software trigger event True if both L1_swC and L2_SwC is set in L1a message and 
L2a message respectively 
0: Normal trigger 
1: Software trigger 

9 Calibration trigger event True if pre-pulse has arrived – independent of CIT flag.  
0: Not a calibration trigger (no pre-pulse) 
1: calibration trigger 

10 L2r received True if stored event has ended with an Level 2 reject trigger 
11 L2a received True if stored event has ended with an Level 2 accept trigger 
12 Include payload High if the CDH should generate payload. This is logically equal 

to: L2a_received and not missing_L1 and not missing_L0 
17:13 SCLK phase Gives the phase of the sampling clock when a trigger has 

arrived. 
Table D-20: Event information register with information concerning last 
event. The same information is found as the first word in the FIFO. 
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Bit Name Explanation 
0  Channel B Stop Bit Error Serial B stop bit is 0 when it is expected to be 1 
1 Single Bit Hamming 

Error Individually Addr 
Single bit hamming error found and corrected in individually 
addressed message 

2 Double Bit Hamming 
Error Individually Addr 

Double bit hamming error found in individually addressed 
message, not possible to correct  

3 Single Bit Hamming 
Error Broadcast 

Single bit hamming error found and corrected in broadcast 
message 

4 Double Bit Hamming 
Error Broadcast 

Double bit hamming error found in broadcast message, not 
possible to correct  

5 Unknown Message 
Address Received 

If an individually addressed message has arrived with an address 
that is not recognized 

6 Incomplete L1a message High when less than 4 L1 data words follows a L1 header 
7 Incomplete L2a Message High when less than 7 L2a data words follows a L2a header 
8 Incomplete RoI Message High when less than 3 RoI data words follows a RoI header 
9 TTCrx Address Error High if the TTCrx address is unequal to 0x8001 
10 Spurious L0 High if a L0 trigger comes outside of the legal time window for a L0 
11 Missing L0 High if the L0 trigger is missing 
12 Spurious L1 High if a L1 trigger comes outside of the legal time window for a L1 
13 Boundary L1 High if a L1 trigger is in the uncertainty region set by the L1 

Latency register 
14 Missing L1 High if the L1 trigger is missing 
15 L1a message arrives 

outside legal timeslot 
High if all or part of the L1a message arrives outside of the legal 
time window for a L1a message 

16 L1a message 
missing/timeout 

High if the L1a message does not start to arrive within the legal 
time window for a L1a message  

17 L2 message arrives 
outside legal timeslot 

High if all or part of the L2a/L2r message arrives outside of the 
legal time window for a L2a/L2r message 

18 L2 message 
missing/timeout 

High if the L2a/L2r message does not start to arrive within the legal 
time window for a L2a/L2r message 

19 RoI message arrives 
outside legal timeslot 

High if all or part of the RoI message arrives outside of the legal 
time window for a RoI message. 

20 RoI message 
missing/timeout 

High if the RoI message does not start to arrive within the legal 
time window for a RoI message. 

21 Prepulse error Not Set 
22 L1a message content 

error 
High if one of the following occur: 
CIT_L1 = 0 after arrival of pre-pulse 
L1_SwC = 0 when CIT_L1 = 1 
L1_SwC /= L2_SwC 
CIT_L1 /= CIT_L2a 
ESR_L1 /= ESR_L2a 

23 L2 message content 
error 

High if one  of the following occur: 
BCID_L2a/L2r > 3563 
CIT_L2 = 0 after arrival of pre-pulse 
L2_SwC = 0 when CIT_L2 = 1 
L1_SwC /= L2_SwC 
CIT_L1 /= CIT_L2a 
ESR_L1 /= ESR_L2a 

24 RoI message content 
error 

High if the following occur: 
BCID_RoI > 3563 

Table D-21: Event error register with error information concerning last 
event. The same information is found as the second word in the FIFO. 
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Bit Name Explanation  
0 Trigger Overlap Error Spurious L0 error 
1 Trigger L0 missing error Missing L0 error 
2 Data parity error Not handled by trigger receiver (= ‘0’) 
3 Control parity error Not handled by trigger receiver (= ‘0’) 
4 Trigger information unavailable Incomplete L1a message | 

Incomplete L2a Message | 
Incomplete RoI Message | 
L1a message missing/timeout | 
L2 message missing/timeout | 
RoI message missing/timeout 

5 Front-end electronics error Not handled by trigger receiver (= ‘0’) 
6 HLT decision flag Not handled by trigger receiver (= ‘0’) 
7 HLT payload flag Not handled by trigger receiver (= ‘0’) 
8 DDG payload flag Not handled by trigger receiver (= ‘0’) 
9 Trigger L1 time violation Spurious L1 
10 Trigger L2 timeout and L2 timing 

violation 
NOT Missing L1 & 
L2 message arrives outside legal timeslot | 
L2 message missing/timeout 

11 Pre-pulse or Pre-trigger error Not handled as the programmable pre-pulse 
BunchCrossing  interval/range can not currently be 
detected (= ‘0’) 

12 Trigger error Serial B Stop bit Error | 
Single Bit Hamming Error Individually Addressed | 
Double Bit Hamming Error Individually Addressed | 
Single Bit Hamming Error Broadcast | 
Double Bit Hamming Error Broadcast | 
Unknown Message Address Received | 
L1a message Data Error | 
L2a Message Data Error | 
RoI Message Data Error | 
L1a message arrives outside legal timeslot | 
L2 message arrives outside legal timeslot | 
RoI message arrives outside legal timeslot | 
RoI message missing/timeout | 
BCID error (local unlike received) | 
L1a message content error | 
L2 message content error | 
RoI message content error 

13 Trigger L1 missing error Missing L1 & 
NOT L2 message missing/timeout 

14 Multi-event buffer error Not handled by trigger receiver (= ‘0’). 
15 Reserved for future use. (=’0’) 

Table D-22: The CDH error and status word found in CDH word 4. The 
errors that are not handled by the trigger receiver are explicitly marked. 
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D.6.2 Tables Defining Inputs to the Trigger Receiver Module 

Except for Table D-32 and Table D-33, all tables in this section are from [9, 34, 48] 
The tables describing the hamming code are based on the C source code files of the 
LTU. 

star
t 

FMT Cmd/Data [7:0] Hmg[4:0] stop 

0 0 dddddddd eeeee 1 
Table D-23: Broadcast message on serial B channel. FMT bit is 0 for a 
broadcast message. 

Bit 7..6 5..2 1 0 
 User message System message Eventcount reset Bunchcount Reset 

Table D-24: Definition of serial channel B broadcast message. 

star
t 

FMT TTCrx_addr[13:0] Ext 
addr 

1 Subaddr 
[3:0] 

Data [11:0] Hmg[6:0] stop 

0 1 tttttttttttt i 1 aaaa dddddddddddd eeeeeee 1 
Table D-25: Individual addressed message on serial channel B. FMT bit is 
1 for an individual addressed message. 

Subaddress[3:0] Type of message 
0x0 Reserved 
0x1 L1 header 
0x2 L1 data 
0x3 L2 accept header 
0x4 L2 accept data 
0x5 L2 reject header 
0x6 RoI header 
0x7 RoI data 
0x8 Fee reset 
0x9 - 0xB Reserved for the CTP 
0xC – 0xF Available for sub-detectors 

Table D-26: Type of messages received as individual addressed serial 
channel B transmissions. From [9], additionally including Fee reset which is 
defined in [48].   

Word 15..12 11 10 9..6 5 4 3..2 1..0 
1 L1 header Spare bit CIT RoC[3:0] ESR L1SwC L1Class[49:46] 
2 L1 data L1Class[45:34] 
3 L1 data L1Class[33:22] 
4 L1 data L1Class[21:10] 
5 L1 data L1Class[9:0] Spare bits 

Table D-27: Level 1 message format. 
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Word 15..12 11 10 9 8 7..2 1..0 
1 L2a header BCID[11:0] 
2 L2a data OrbitID[23:12] 
3 L2a data OrbitID[11:0] 
4 L2a data spare ESR CIT L2SwC L2Cluster[5:0] L2Class[49:48] 
5 L2a data L2Class[47:36] (physics) | Detector[23..12] (software) 
6 L2a data L2Class[35:24] (physics) | Detector[11..0] (software) 
7 L2a data L2Class[23:12] (physics) | 0 (software) 
8 L2a data L2Class[11:0] (physics) | 0 (software) 

Table D-28: Level 2 accept message format. 

Word 15..12 11..0 
1 L2r header BCID[11:0] 

Table D-29: Level 2 reject message format. 

Word 15..12 11..0 
1 RoI header BCID[11:0] 
2 RoI data RoI_data[35:24] 
3 RoI data RoI_data[23:12] 
4 RoI data RoI_data[11:0] 

Table D-30: Region of Interest message format. 

Abbreviation Explanation 
CIT Calibration trigger flag. This flag should be high if the trigger sequence is a 

calibration trigger sequence hence is preceded by a pre-pulse. 
RoC Readout Control. Controls the readout mode of the sub-detector, but is also 

used for other purposes. For instance, the type of software trigger is 
defined by ROC. 

L1SwC Software trigger flag (Level 1 message). 
L2Sw Software trigger flag (Level 2 message). 
ESR Enable Segmented Readout. Enables the Region of Interest option if high. 
BCID Bunchcrossing ID. The number of the particle bunch involved in the 

collision. 
Orbit ID The number of times all bunches have travelled one orbit in the LHC ring 

since start of run. 
L1Class/L2Class Trigger class. The trigger class is defined by the parameters required to 

make up a trigger selection: trigger cluster, the set of trigger inputs, 
past/future protection requirements and a few other parameters. 

Detector The information concerning the participating sub-detectors (when software 
triggers). 

RoI Data Defining the Region of Interest. 
Table D-31: Definitions of the abbreviations in Table D-27, Table D-28, 
Table D-29 and Table D-30. 

Hamming bit  
h(0) d(0) ⊕ d(1) ⊕ d(2) ⊕ d(3) 
h(1) d(0) ⊕ d(4) ⊕ d(5) ⊕ d(6) 
h(2)  d(1) ⊕ d(2) ⊕ d(4) ⊕ d(5) ⊕ d(7) 
h(3)  d(1) ⊕ d(3) ⊕ d(4) ⊕ d(6) ⊕ d(7) 
h(4)  h(0) ⊕ h(1) ⊕ h(2) ⊕ h(3) ⊕ d(0) ⊕ d(1) ⊕ d(2) ⊕ d(3) ⊕ d(4) ⊕ d(5) ⊕ d(6) ⊕ d(7) 

Table D-32: 8 bit hamming coding as used in broadcast transmissions 

 

 

 



192 

Hamming bit  
h(0) d(0) ⊕ d(1) ⊕ d(2) ⊕ d(3) ⊕ d(4) ⊕ d(5) 
h(1) d(6) ⊕ d(7) ⊕ d(8) ⊕ d(9) ⊕ d(10) ⊕ d(11) ⊕ d(12) ⊕ d(13) ⊕ d(14) ⊕ d(15) ⊕ 

d(16) ⊕ d(17) ⊕ d(18) ⊕ d(19) ⊕ d(20) 
h(2)  d(6) ⊕ d(7) ⊕ d(8) ⊕ d(9) ⊕ d(10) ⊕ d(11) ⊕ d(12) ⊕ d(13) ⊕ d(21) ⊕ d(22) ⊕ 

d(23) ⊕ d(24) ⊕ d(25) ⊕ d(26) ⊕ d(27) 
h(3)  d(0) ⊕ d(1) ⊕ d(2) ⊕ d(6) ⊕ d(7) ⊕ d(8) ⊕ d(9) ⊕ d(14) ⊕ d(15) ⊕ d(16) ⊕ d(17) ⊕ 

d(21) ⊕ d(22) ⊕ d(23) ⊕ d(24) ⊕ d(28) ⊕ d(29) ⊕ d(30) 
h(4)  d(0) ⊕ d(3) ⊕ d(4) ⊕ d(6) ⊕ d(7) ⊕ d(10) ⊕ d(11) ⊕ d(14) ⊕ d(15) ⊕ d(18) ⊕ d(19) 

⊕ d(21) ⊕ d(22) ⊕ d(25) ⊕ d(26) ⊕ d(28) ⊕ d(29) ⊕ d(31) 
h(5) d(1) ⊕ d(3) ⊕ d(5) ⊕ d(6) ⊕ d(8) ⊕ d(10) ⊕ d(12) ⊕ d(14) ⊕ d(16) ⊕ d(18) ⊕ d(20) 

⊕ d(21) ⊕ d(23) ⊕ d(25) ⊕ d(27) ⊕ d(28) ⊕ d(30) ⊕ d(31) 
h(6) h(0) ⊕ h(1) ⊕ h(2) ⊕ h(3) ⊕ h(4) ⊕ h(5) ⊕ d(0) ⊕ d(1) ⊕ d(2) ⊕ d(3) ⊕ d(4) ⊕ d(5) 

⊕ d(6) ⊕ d(7) ⊕ d(8) ⊕ d(9) ⊕ d(10) ⊕ d(11) ⊕ d(12) ⊕ d(13) ⊕ d(14) ⊕ d(15) ⊕ 
d(16) ⊕ d(17) ⊕ d(18) ⊕ d(19) ⊕ d(20) ⊕ d(21) ⊕ d(22) ⊕ d(23) ⊕ d(24) ⊕ d(25) ⊕ 
d(26) ⊕ d(27) ⊕ d(28) ⊕ d(29) ⊕ d(30) ⊕ d(31) 

Table D-33: 32 bit hamming coding as used in individual addressed 
transmissions. 

D.6.3 Version Change Log 

Version 1.0 

• Decoding of serial B input.  

• Broadcast messages.  

• Individual addressed messages.  

• Hamming decoding of serial Channel B message.  

• Repair and count single bit errors.  

• Count other errors.  

• Generation of Level 2 accept, Level 2 reject and RoI trigger.  

• Generation of eventcount reset and bunchcount reset from serial Channel B broadcast messages.  

• Counters: Level 1 Accept, level 2 accept, level 2 reject and RoI triggers.  

• Verification if L2a+L2r = L1a.  

• Testmode that simulates arrival of serial B messages.  

• Handling of transmission errors etc.  

• Memory mapped interface.  

• CDH outputs for data assembler.  

 

Version 1.1 

• Redesigned most parts of the module.  

• Supports both RCU and BusyBox.  

• Decoding serial Channel B input.  

• Broadcast messages (bunchcount reset, eventcount reset, pre-pulse).  

• Individual addressed messages (L1a, RoI, L2a, L2r).  

• Decode Channel A line to L0 trigger and L1a trigger.  
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• Hamming decoding of serial B message.  

• Report, repair and count single bit hamming errors.  

• Report and count other errors, including double bit hamming errors, message decoding error and 
sequence validation errors.  

• Generation of L0, L1a, L2a and L2r trigger.  

• Decoding of RoI is optional and can be enabled in the Control/Status register.  

• Status output showing if run is ongoing. (Between vanguard and rearguard trigger.)  

• Counters: Internal bunchcounter, trigger counters, message counters and error counters.  

• Reporting transmission errors etc.  

• Reporting timeouts and sequence errors.  

• Memory mapped interface.  

• RCU Version with 32 bit bidirectional data-bus.  

• BusyBox Version with 16 bit bidirectional data-bus.  

• FIFO with header words and event information for data assembly.  

• Generic debug-mode with possibility to read out FIFO from DCS board, more debug registers and a 
simple simulation of arrival of trigger sequences.  

 

Version 1.2 (13.12.2007) 

• Sample Channel A and serial Channel B on falling edge.  

• Remake of L1a decode module to simplify it.  

• Remake of Addressed message decoder:  

o Added FEE reset decoding.  

o It is now possible that messages come in between each other (L2H-L2D-L1H-L1D-L2D .. 
etc).  

• Remake of Sequence Validator module so that the time windows can overlap to the extreme (this was 
not possible earlier.  

• Some modifications to the Error and info register.  

• Added Phase check module to store in what phase of the sampling clock the trigger arrives.  

• Control registers slightly changed.  

• All latencies now given with respect to L0 trigger instead of BC0.  

 

Version 1.21 (29.05.2008) 

• Corrected the version information in the CDH.  

• Bugfix in the phase-check module. The stored phase is no longer cleared when an L2 trigger arrives.  

 

Version 1.22 (30.05.2008) 

• Added input meb_depth and a meb_mask_enable to control register. This will make it possible to 
constrain the FIFO to store only the number of header as multi event buffers. Any trigger sequences 
received if MEBs are full are masked completely. 

 

Version 1.23 (12.06.2008) 
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• Removed input meb_depth and a meb_mask_enable to control register.  

• Removed test for RoC = 0 when physics trigger as this was not correct. 

• Added inputs meb_full, ddl_rdy_rx and enable_trigger_input_mask to control register. The 
enable_trigger_input mask will enable the meb_full_flag or the ddl_rdy_rx to mask out any incoming 
triggers. In addition it will constrain the FIFO to only be able to store 8 events. 

D.7 Other Tables 
 Bit 
Word 

[31:24] [23:16] [15:8] [7:0] 

1 Data word [31:0] 
2 Data word [23:0] Data word [39:32] 
3 Data word [15:0] Data word [39:24] 
4 Data word [7:0] Data word [39:16] 
5 Data word [39:8] 

Table D-34: Four 40 bit ALTRO data words are formatted into five 32 bit 
DAQ words. From [13]. 
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Appendix E  
 
 
Index 

A Large Ion Collider Experiment. See ALICE 
A Toroidal LHC ApparatuS. See ATLAS 
Active Partial Reconfiguration, 62, 83, 85, 87, 89, 91, 

92, 101, 102 
ALICE, 15, 17, 18, 29, 81 
ALICE detector, 15, 19, 151 
ALICE TPC gas mixture, 20 
Altera Excalibur FPGA, 40 
Altera signalTAP, 131 
ALTRO, 35, 36, 57, 70, 121, 124, 126 
ALTRO bus, 68, 70, 71, 78, 106, 124, 134 
ARM processor core, 40 
ASIC, 61, 84 
ATLAS, 17 
Board Controller, 36, 47, 66, 68, 69, 70, 72, 74, 78, 80, 

106, 124 
broadcast message, 110, 113 
bunchcrossing ID, 25, 117 
BusyBox, 26, 43, 52, 61, 106, 119, 127, 149 
CDH, 106, 108, 112, 113, 116, 117, 144 
Central Trigger Processor. See CTP 
CERN, 15 
CLB, 86 
CMS, 17 
Common Data Header. See CDH 
Compact Muon Solenoid. See CMS 
Concurrent Versioning System. See CVS 
Configuration Database, 29 
Control Engine, 49, 144 
Control Node, 64, 103, 129, 145 
CTP, 24, 26, 43, 62, 105 
cumulative effects, 23, 81 
CVS, 153 
DAQ, 24, 26, 27, 32, 64, 107, 116, 149 
Data Acquisition. See DAQ 
data readout, 16, 19, 39, 44, 68, 106, 115, 121, 137, 142, 

146, 152 
Data Readout Received Card. See D-RORC 
DCS, 29, 32, 47, 49, 64, 69, 100 
DCS archive database, 29 
DCS board, 32, 38, 39, 40, 41, 43, 47, 49, 50, 51, 52, 55, 

56, 58, 60, 61, 92, 107, 109, 118, 152 
DDL, 27, 32, 39 
Destination Interface Unit. See DIU 
Detector Control System. See DCS 

Detector Data Link. See DDL 
device drivers, 49, 52 
DIU, 27 
D-RORC, 27, 44, 127, 146 
ECS, 24 
ElectroMagnetic Calorimeter. See EMCal 
embedded computer, 5, 40 
EMCal, 22, 26, 108 
event, 19, 22, 24, 27, 31, 43, 103, 105, 107, 108, 111, 

115, 116, 118, 122, 126, 142, 144, 146 
event ID, 127, 128 
Experiment Control System. See ECS 
FC bus, 68, 71, 78, 79, 134 
FEC, 32, 33, 34, 35, 36, 42, 47, 64, 66, 68, 70, 74, 124, 

137, 139, 150 
Fee, 20, 21, 23, 26, 28, 29, 31, 32, 33, 34, 35, 39, 43, 81, 

105, 108, 127, 144, 149, 152 
FeeServer, 47, 49, 144 
FMD, 22, 26, 70, 108 
Forward Multiplicity Detector. See FMD 
FPGA, 16, 84 

Actel ProASICplus APA075, 91 
Altera Excalibur FPGA, 41 
Xilinx Virtex-II Pro XC2VP7, 85 

frame, 85, 87, 90, 93, 98, 99 
Frame by Frame Readback, Verification and Correction, 

92, 93, 95, 101, 138 
Front End Card. See FEC 
Front-end electronics. See Fee 
functional verification, 131, 138 
health monitoring, 36, 69, 70, 74 
High Level Trigger. See HLT 
High Voltage Bias, 36, 68, 70, 72, 76 
HLT, 24, 27, 28, 105 
I2C, 51, 68, 72, 74, 78, 79 
individually addressed message, 110, 113 
Large Hadron Collider. See LHC 
LHC, 15, 26, 105, 142 
LHC beauty. See LHCb 
LHCb, 17 
Linux, 40, 42, 47, 49 
Local Trigger Unit. See LTU 
LTU, 26, 44, 62, 118 
MessageBuffer, 53, 54, 57, 58 
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mitigation technique, 5, 16, 68, 80, 83, 84, 90, 100, 103, 
120, 141, 146, 152 

Monitoring and Safety Module, 64, 65, 66 
Orbit ID, 26 
Oslo Cyclotron Laboratory, 140 
PCB backplanes, 5, 34, 39 
PHOS, 16, 21, 23, 26, 31, 33, 34, 36, 39, 40, 42, 52, 68, 

70, 79, 81, 105, 134, 136, 141, 142, 143, 152 
CPV, 21 
EMC, 21 

PHOton Spectrometer. See PHOS 
Quark Gluon Plasma, 15, 17, 18 
radiation environment, 16, 20, 22, 31, 48, 79, 81, 84, 

102, 139, 140, 152 
RCU, 32, 33, 34, 36, 38, 48, 81, 84, 87, 100, 102, 106, 

108, 152 
RCU Communication Module, 41, 52, 53, 54, 55, 57, 63 
RCU main FPGA, 39, 40, 47, 48, 52, 63, 64, 98, 100, 

102, 104, 105, 107, 129, 134, 145 
RCU Motherboard, 32, 39, 40, 54, 55, 60, 64, 83, 84, 91, 

98, 107 
RCU support FPGA, 40, 48, 52, 54, 55, 59, 60, 91, 92, 

94, 98, 99, 100 
Readout Control Unit. See 
readout electronics, 16 
Readout Node, 31, 64, 103, 105, 106, 108, 116, 121, 

122, 129, 145, 148 
readout partition, 33, 34, 39, 66 
Reconfiguration Network, 40, 48, 54, 102 
Scrubbing, 87, 90, 92, 95, 101 
selectMAP, 53, 60, 62, 88, 95, 99 

SEU, 48, 79, 82, 85, 90, 103, 120, 146 
Single Event Burnout, 82 
single event effects, 23, 68, 81, 83 
Single Event Latchup, 82 
Single Event Upset. See SEU 
SIU, 27, 32, 38, 65 
Source Interface Unit. See SIU 
Sparse Readout, 68, 69, 71, 105, 124, 125 
state machine, 61, 80, 96, 98, 99, 100, 103, 114, 147 
testbench, 131, 132, 133, 134, 135, 153 
The Svedberg Laboratory, 140 
Time Projection Chamber. See TPC 
TMR, 61, 79, 103, 120, 148 
TPC, 16, 20, 23, 25, 31, 33, 35, 39, 40, 44, 52, 60, 64, 

66, 68, 69, 79, 81, 102, 105, 127, 140, 141, 144, 152 
Transition Radiation Detector. See TRD 
TRD, 22, 40, 51 
trigger, 19, 22, 24, 27, 28, 32, 42, 60, 72, 105, 106, 107, 

108, 109, 110, 112, 113, 114, 117, 121, 127, 134, 
144, 152 

Trigger Receiver Module, 106, 107, 108, 109, 112, 120, 
128, 129 

Trigger Region Unit. See TRU 
Trigger, Timing and Control. See TTC 
Trigger-OR, 40, 42, 43, 52, 61, 101 
Triple Modular Redundancy. See TMR 
TRU, 32, 34, 36, 42, 43, 101 
TTC, 24, 26, 32, 44, 105, 107, 108, 110, 116, 129, 141, 

152 
TTCrx, 51, 61, 62, 107, 109 
Xilinx Chipscope Pro, 131 
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