Unified Dark Sector

Jan Ø. Lindroos

Department of physics and technology, University of Bergen & Bergens Forskningsstiftelse

In collaboration with Institute of Theoretical Astrophysics, University of Oslo

June 27, 2011

Unified Dark Sector: Outline

- Brief intro: Dark matter and Dark Energy
- Overview of the concordance model ACDM
- Motivation for Unified Dark Matter models
- UDM fluids
- An example: Chaplygin Gas
- Scalar Field Approach
- A viable example: K-essence of Born-Infeld type

Dark Matter and Dark Energy: Basics

- Data from observations of CMB anisotropies, large scale structure, galaxy and cluster dynamics and supernovae redshifts seem to indicate that 96% of the matter in the universe is non-baryonic.¹
- The standard interpretation is that roughly 22% is made up of Dark Matter (DM) and 74% in the form of Dark Energy (DE)
- The dark matter component is believed to act as a pressureless component, and are the main gravitational source for structure formation.
- The dark energy is belived to be a homogeneous component with negative pressure and is responsible for the late time acceleration of the universe.

Dark Matter and Dark Energy: Candidates

- Dark Matter Candidates:
 - Simplest choice: Weakly Interacting Massive Particles (WIMPS)
 - Alternative: Non-WIMP particle scenarios, modified gravity theories
- Dark Energy Candidates
 - Simplest choice: Cosmological Constant Λ
 - Alternative: Dynamical scalar field ϕ

$$ho_{\phi} = \dot{\phi}^2 + V(\phi) \ , \ \ p_{\phi} = \dot{\phi}^2 - V(\phi) \stackrel{\dot{\phi}^2 \ll V(\phi)}{\longrightarrow} p_{\phi} = -
ho_{\phi}$$

 Unified Dark Matter: Single component accounting for early structure formation (DM) and late time acceleration (DE)

Concordance Model: flat ACDM

 Simplest solution: A model with a cosmological constant Λ and a pressureless component gives ΛCDM

Figure: ACDM evolution with inflation and energy content today

> Data consistent with a flat ΛCDM model with $\Omega_{DM0} = 0.22$ and $\Omega_{\Lambda 0} = 0.74$

Why UDM scalar field models?

- Scalar fields proposed to describe both DM, DE and inflation, natural to try to relate them
- > No explanation for why $\Omega_{DM} \sim \Omega_{DE}$ today
- No theoretical justification for the smallness of \(\rho_{DE}\)
- ACDM not perfect: Some discrepancies with respect to data (Large Scale Velocity Flows, High-z Snla, ...)²

Unified Dark Matter

> UDM tries to account for both DM and DE using a single component.

 $\rho = \rho_{DM} + \rho_{\Lambda}$

- > A plethora of models giving a background evolution consistent with data
- Examples:
 - (Generalized) Chaplygin Gas
 - (Generalized) Scherrer Solutions
 - Perfect fluid with affine equation of state

An Example: Chaplygin Gas

Introduce a new perfect fluid with an exotic equation of state ^{3,4}

$$p = -A\rho^{-1} \rightarrow \rho = \sqrt{A + \frac{B}{a^6}}$$

▶ small a, $(a^6 \ll \frac{B}{4})$: $\rho \rightarrow \sqrt{B}a^{-3}$ (behaves as DM)

- large $a, (a^6 \gg \frac{B}{A}): \rho \rightarrow \sqrt{A}, p \rightarrow -\sqrt{A}$ (behaves as DE)
- This determines the background evolution, perturbations described by underlying scalar field.

Canonical:
$$\mathcal{L}(\phi) = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \quad , \quad V(\phi) = \frac{1}{2} \sqrt{A} \left(\cosh 3\phi + \frac{1}{\cosh 3\phi} \right)$$

Non-canonical: $\mathcal{L}(\phi) = -\sqrt{A(1 - BX)} \quad , \quad X = -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi$

Generalized Chaplygin Gas (GCG) $p = -A\rho^{-\alpha}$

Moschella, and Vincent Pasquier. An alternative to quintessence lexander Yu. Kamenshch 1 265-268, 2001 end of unified dark matter? Phys. Rev. ark, Matias Zald ind Joav Waga avard Sandvik. D69:123524, 2004

ivs Lett

Unified Dark Matter Scalar Fields

Large class of UDMs can be described by the general lagrangian ⁵

$$\mathcal{L}_{\phi} = F(X) - V(\phi) \ , \ \ X = -rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi$$

Pressure and density (perfect fluid)

$$p_{\phi} = \mathcal{L}_{\phi}$$
 , $\rho_{\phi} = 2X \frac{\partial p_{\phi}}{\partial X} - p_{\phi}$, $\omega_{\phi} = \frac{p_{\phi}}{2X(\partial p_{\phi}/\partial X) - p_{\phi}}$

Cosmological Evolution

Background:
$$\left(\frac{\partial p_{\phi}}{\partial X} + 2X \frac{\partial^2 p_{\phi}}{\partial X^2}\right) \ddot{\phi} + \frac{\partial p_{\phi}}{\partial X} (3H\dot{\phi}) + \frac{\partial^2 p_{\phi}}{\partial \phi \partial X} \dot{\phi}^2 - \frac{\partial p_{\phi}}{\partial \phi} = 0$$

Perturbations: $u'' - c_s^2 \nabla^2 u - \frac{\theta''}{\theta} u = 0$

Unified Dark Matter Scalar Fields

An important general feature is the appearance of an effective speed of sound $c_{
m s}$

$$c_{s}^{2} = \frac{\partial p/\partial X}{\partial \rho/\partial X} = \frac{\partial p/\partial X}{(\partial p/\partial X) + 2X(\partial^{2}p/\partial X^{2})}$$

- c_s gives rise to a sound horizon λ_J below which the field does not cluster
- c_s changes the evolution of the gravitational potential Φ .
- > Changes in Φ affects CMB photons passing through, altering the CMB spectrum (ISW effect).
- ▶ Viable models should have $\lambda^2 \gg \lambda_J^2$ for all scales of cosmological interest.
- This constraint can be used to constrain existing models, and as a guideline for constructing viable models.

GCG constraint: $\alpha < 10^{-4}$, Viable Model: K-essence of Born-Infeld type

www.ift.uib.no

Viable Model: Born-Infeld K-essence

Assumes Lagrangian of the form $\mathcal{L} = F(X) + V(\phi)$ with ⁶

$$F(X) = -\sqrt{1 - \frac{2X}{M^4}} \quad , \quad V(\phi) = \alpha \frac{\sinh(\beta \phi) + \mu}{1 + \sigma \sinh^2(\beta \phi)}$$
$$c_s^2 = 1 - \frac{2X}{M^4}$$

- Gives right background evolution
- Gives small enough sound speed c_s & ISW comparable to observations.
- Kinetic terms of this type appear in the low energy limit of string theory and brane cosmology
- Could be distinguished from ACDM by EUCLID and Pan-STARRS

