
Department of physics and technology

U
 N

 I V
 E R S I T A

 S

B
 E R G E N S I

S
Development of the ALICE Busy Box

Masters thesis

by

Magne Munkejord

University of Bergen
October 2007

Abstract

The European Organisation for Nuclear Research (CERN) is building a large circular particle
accelerator called the Large Hadron Collider (LHC). The LHC will be able to accelerate and
contain two beams of particles, travelling in opposite directions around the accelerator ring.

At four points around the ring the beams will intersect and the accelerated particles will
collide. Four large detector experiments are being constructed around these points to observe the
collisions.

The ALICE experiment is designed to study the effects of large hadrons colliding at very
high energies. Collisions will occur with a average rate of approximately 8 kHz. Only a subset
of these collisions provide interesting data and a sophisticated trigger system is employed to
select which events should be recorded.

The Front End Electronics (FEE) of the detector sub systems produces large amounts of data
for each event that is recorded. The event data is transfered out of the detector and up to the Data
Acquisition (DAQ) system over high speed optical fiber links.

The Busy Box is a FPGA based device that monitors and verifies the transfer of event data
from the FEE to the DAQ system of the ALICE experiment at CERN. By looking at which events
have been triggered for readout and which of these events have arrived at the DAQ the Busy Box
keeps track of the number of used buffers in the FEE. The Busy Box will assert a busy signal to
let the trigger system know if the buffers run full and thereby prevent additional triggers and a
possible overflow and data corruption in the buffers of the FEE. This feature makes it possible to
run the system at its maximum capacity concerning the readout bandwidth from the FEE to the
DAQ system where the busy generation will reduce the trigger rate whenever the bandwidth is
insufficient.

The Busy Box will be utilized to four of the sub detector systems of ALICE; PHOS, EMCal,
FMD and the Time Projection Chamber (TPC). For the TPC sub detector system the Busy Box
needs to communicate with over 200 units in the DAQ system to verify the transfer of each event.
The process of event transfer verification must execute significantly faster than the maximum
readout rate of the detector which could reach a kHz.

Acknowledgements

The work presented in this thesis has been carried out with the help and support of many
people. Most of them are employees or students at the Department of Physics and Technology at
the University of Bergen where I spent my time as a master student.

First of all I would like to thank my supervisor Kjetil Ullaland for his guidance and support
during this work. Dieter Röhrich deserves credit for sharing his wisdom and knowledge with me.

I want to thank Johan Alme and Ketil Røed for discussions and feedback on my work, and
for their great help whenever I got stuck. Are Stangeland has been a great co-student and travel
companion on our trip to CERN. And from CERN I would like to thank Csaba Soós for his
company and for his work with integrating and testing of the Busy Box.

Big thanks to my friends and co-students Yngve Skogseide, Edvard Fosdahl, Knut Solvåg,
Olav Torheim, Thomas Gundersen and Anders Rossebø for times well spent at room 446 — the
microelectronics lab.

Finally I would like to thank my parents, Kari and Einar, other family and friends for moti-
vation and support.

Contents

1 Introduction 1
1.1 European Organisation for Nuclear Research (CERN) 1
1.2 The Large Hadron Collider (LHC) . 1
1.3 Collision rates in the LHC . 3
1.4 A Large Ion Collider Experiment (ALICE) . 4
1.5 Time Projection Chamber (TPC) . 5

2 Data acquisition for ALICE TPC 7
2.1 Introduction . 7
2.2 Front End Electronics (FEE) of TPC . 8

2.2.1 Front End Card (FEC) . 9
2.2.2 Readout Control Unit (RCU) . 10

2.3 Detector Data Link (DDL) . 10
2.4 Data Acquisition system . 11
2.5 Trigger system . 12

2.5.1 Central Trigger Processor (CTP) . 12
2.5.2 Trigger sequences . 12
2.5.3 Past-future protection . 13
2.5.4 Timing, Trigger and Control (TTC) . 13
2.5.5 Event ID . 13

2.6 Busy generation . 14
2.7 About this work . 14

3 Busy Box 17
3.1 Busy Box hardware . 17
3.2 System overview . 18
3.3 DCS board . 21

3.3.1 Trigger message decoding . 21
3.4 Low Voltage Differential Signaling (LVDS) driver for BUSY signal 21
3.5 Virtex-4 Field Programmable Gate Array (FPGA) 22

3.5.1 Virtex-4 I/O banks . 22
3.6 Virtex-4 Programming Interfaces . 22

3.6.1 SelectMAP interface . 22

ii CONTENTS

3.6.2 JTAG interface . 23
3.7 Busy Box circuit board . 23

3.7.1 Power supply . 24

4 Serial Communication with the D-RORCs 25
4.1 Physical Layer . 25
4.2 Serial bit-encoding schemes . 26
4.3 Alternative solutions . 28
4.4 Basic operation . 28
4.5 Transmission error handling . 31
4.6 Messages . 35

5 Implementation 37
5.1 Introduction . 37
5.2 Overview . 37
5.3 DCS bus arbiter and address decoder . 39
5.4 Receiver module . 40

5.4.1 Serial Receiver . 40
5.4.2 Multiplexer tree architecture . 41

5.5 Transmitter module . 43
5.5.1 Serial encoder . 43
5.5.2 Transmitter controller . 44

5.6 RX Memory module . 44
5.7 Trigger receiver module . 45
5.8 Event ID verification module . 46
5.9 Busy generator . 47
5.10 Control and status registers . 48

6 Testing and verification 49
6.1 Simulation . 49

6.1.1 Simulating the Busy Box firmware . 50
6.2 Serial LVDS communication tests . 51

6.2.1 Loopback cable test . 51
6.2.2 First integration tests at CERN . 52
6.2.3 Test of communications with another device as D-RORC replacement . . 53

6.3 More integration tests at CERN . 53
6.3.1 Integration test with a complete TPC sector 53

7 Discussion and conclusion 55
7.1 Firmware completion . 55
7.2 Identifying and exploring sources for error conditions 55
7.3 Software for the DCS board . 56
7.4 Testing and integration of the finalized system 57

CONTENTS iii

7.5 Conclusion . 57

A Firmware for readout electronics of a muon detector 59
A.1 Introduction . 59
A.2 Cosmic rays . 59

A.2.1 Air showers and muons . 60
A.2.2 Muon detection . 60

A.3 The Cosmic Ray Telescope detector system . 60
A.3.1 Scintillator . 60
A.3.2 PhotoMultiplier Tube . 61
A.3.3 Asynchronous trigger circuits . 63
A.3.4 Digital readout electronics . 63
A.3.5 Data analysis and presentation . 64

A.4 Firmware implementation . 64
A.4.1 Overview . 64
A.4.2 Implementation . 65

A.5 Testing . 66
A.5.1 Simulation - Formal verification . 66
A.5.2 Synthesis and post-synthesis simulation 67
A.5.3 Testing in real system . 67

A.6 Conclusion . 67

B FPGAworld 2007 article 69

C Abbreviations 77

iv CONTENTS

Chapter 1

Introduction

1.1 European Organisation for Nuclear Research (CERN)
CERN is the European organization for nuclear research. It was founded in 1954 after World
War II as a cooperation between 12 European countries to promote nuclear research. Today
there are 20 nations that have status as members while several other nations and organizations
have observer status. The organization makes it possible to build large experiments that would
be too expensive for one nation alone.

CERN’s facilities are located at the border between France and Switzerland, about an hours
drive from Geneva. About 3000 full time employees runs and develop the facilities while some
6500 researchers and scientists spends time there to research.

1.2 The Large Hadron Collider (LHC)
The LHC [1] is a large particle accelerator currently under construction at CERN’s facilities.
When it is finished it will be the largest and most powerful human built particle accelerator in the
world. LHC is circular accelerator with a circumference of approximately 27 km. It is built in a
tunnel that is 100 to 150 meters underground. The accelerator will be able to accelerate protons
and heavy ions up to 99,9 % of the speed of light. Thus the particles will do approximately 11000
round trips in the accelerator per second. Figure 1.1 shows an illustration of the construction.

The particles are accelerated in several steps in other accelerators before bunches of particles
are injected into the LHC where they will be accelerated up to their maximum velocity. The
charged particles are accelerated by strong electric fields. The fields are generated by shooting
electromagnetic waves into resonance cavities which oscillates at 40.08 MHz. This way particles
of the same charge can be accelerated in both directions as long as they are in the electric field
at the right time. What is important to note is that most of the bunches will be empty. Hence the
actual rate at which bunches passes each other is lower than the nominal bunchcrossing rate of
40.08 MHz.

Two beams made up of particle bunches are accelerated in opposite directions around the
accelerator ring. The two beams will travel in separate vacuum pipes so that there will not be

2 Introduction

Figure 1.1: Illustration of the LHC tunnel under CERN facilities on the border between Switzer-
land and France [1].

1.3 Collision rates in the LHC 3

any other particles to collide with. The particles are kept in their orbit by strong magnetic fields
that are generated by supercooled and superconducting magnets.

At four points around the accelerator ring the beams intersect and when bunches of particles
crosses each others paths some of them might collide. In other words there is only a statistical
probability that a bunchcrossing will result in a collision. As the particles collide the number of
particles in each bunch decreases and thus the probability for collisions which ultimately reduces
the collision rate. Since it is impossible to refill the bunches, the accelerator must be emptied
when the collision rate is to low. A typical LHC run will last about 6-7 hours before the system
must be restarted.

The reason for building the LHC is to be able to recreate physical processes that are known
to happen out in the universe. Large detector systems are required to observe these events and
therefor it is necessary to recreate them in a laboratory to be able to study them. Even though the
energies in the collisions in the LHC will be the highest ever in man-built accelerators they are
relatively low compared to the energies of particles observed in the cosmic radiation from far out
in the universe. These particles have been created by processes like supernovas and the creations
of black holes. It is expected that the results from research involving the LHC will illuminate
these processes and other mysteries like the dark matter, anti matter and super symmetry.

Researchers hope that the energy density in the LHC collisions will be high enough to create
Quark-Gluon-Plasma (QGP). Nucleons are made of quarks that are bound together be the strong
force which is carried by particles called gluons. QGP is believed to be a state of matter where
the quarks and gluons move freely. It is believed that all matter existed in this state 10 to 30
µs after the Big Bang [2]. By studying matter in this state scientist will be able to put existing
theories to the test and to better understand what matter is and how the elementary forces interact.

The QGP will quickly expand and as the energy density decreases the quarks in the plasma
will recombine into new particles that are spread out in all directions. These new secondary
particles can be detected and will bring a lot of information about what happened in the collision.
Very large and advanced detector systems are required to obtain the desired information and six
different detector experiments are built around the points where the LHC beams intersect.

1.3 Collision rates in the LHC
The rate at which collisions occur inside the detector depends on many factors. As described
earlier the particles travel in bunches. For a collision to occur two bunches must cross paths in
the detector. The rate at which this happens depends of many bunches have been injected into
the LHC. This number is higher for proton-proton mode than Pb-Pb mode. The probability
that some particles in two crossing bunches collide depends among other things on how many
particles are in the bunches. After a while the number of particles in each bunch will be reduced
as particles collide.

Another factor is the focus of the beams. Since the particles in the bunches have the same
electric charge they will repel each other. The keep the bunches together the beams focused
several places around the LHC. At the places where the beams intersect it is possible to adjust
the focus of the beams so the collision rate to some extent can be controlled.

4 Introduction

1.4 A Large Ion Collider Experiment (ALICE)
As mentioned, the ALICE detector experiment is optimized to study heavy ion collisions (Pb-
Pb1) but also proton-proton collisions will be studied. The main goal for the ALICE experiment
is to prove the creation of and study the QGP.

When heavy ions collide in ALICE it is expected that tens of thousands of new particles will
be created and pass through the detector system. The ALICE detector system must be able to
track and identify most of them.

Figure 1.2: Illustrasjon av ALICE

The illustration in figure 1.2 shows an overview of ALICE. The beams are represented by a
thin line through the detector and the particles will collide in the middle of the detector. ALICE
consists of many sub detector systems. All the sub systems that are built around the collision
point are called the central barrel detectors. In addition there are several sub detector systems in
front and back of the central barrel detectors. These are used to determine trigger conditions.

The ALICE central barrel detectors [3] :

Inner Tracking System (ITS) Six layers of silicon wrapped around the beam pipe. It is capable
of tracking particles with low momentum that does not reach out to the other detectors.

Time Projection Chamber (TPC) The main tracking detector of ALICE. Can reconstruct a 3D
image of the trajectories of charged particles that passes through it.

Transition Radiation Detector (TRD) Can detect electrons and positrons.

1Pb is the symbol for lead in the periodic table of elements.

1.5 Time Projection Chamber (TPC) 5

Photon Spectrometer (PHOS) Based on lead tungstate scintillator crystals. Can detect pho-
tons.

High Momentum Particle Identification Detector (HMPID) Can detect particles with high mo-
mentum (fast moving particles).

Time Of Flight (TOF) Detects particles as they pass and measure the time-of-flight from the
origin of the collision.

A large solenoid magnet (L3 magnet) is built around the central barrel detectors. This mag-
net will create a uniform homogeneous magnetic field parallel to the beams. When a charged
particle travel through this field its trajectory will be curved depending on the particles charge
and momentum.

1.5 Time Projection Chamber (TPC)
The TPC [4] is constructed as two coaxial cylinders around the collision point (the ITS will be
placed inside the TPC). An illustration of the TPC structure is shown in figure 1.3. The volume
between the cylinders is filled with gas2. At the axial center the chamber is divided in two by
a thin aluminized Mylar foil which acts as an electrode. The electrical potential of electrode is
approximately 100 kV lower than the end caps of the chamber which creates electrostatic fields
from the end caps towards the center electrode. When a charged particle travels through the
chamber it will ionize the gas molecules in its path. The result is a trail of freed electrons and
gas ions. The electric field makes the ionized gas molecules to drift towards the center electrode
and the freed electrons towards the end caps of the chamber. As the electrons reach the end caps
they can be detected as electrical charges. The time and position where the charges are detected
on the end caps makes it possible to reconstruct a 3D image of all the particle trajectories in the
chamber.

The charge of a single electron is to small to be detected without being lost in noise. To
amplify the charges Multi-Wire Proportional Chambers (MWPCs) are used. Each end cap of the
chamber is segmented in 18 sectors and each sector consists a inner and outer readout chamber
(MWPC). See figure 1.3. Thin metal strings are stretched out in parallel so that they make up a
plane. There are three such planes in each readout chamber. By applying different voltages to the
wire planes strong electric fields are created. These fields are much stronger than the field in the
rest of the chamber. When the drifting electrons enter readout chambers they are accelerated so
that they gain enough energy to ionize gas molecules. The process is repeated for the electrons
that are freed and a avalanche of electrons will eventually hit the end cap. The reason for using
three wire planes is to be able to close the readout chambers by applying a voltage to the gating
grid (first wire plane from the center of the chamber) so that the incoming drifting electrons are
absorbed and will not reach the end caps.

2The gas mixture is normally 90% Neon and 10% CO2 but can be altered to adjust the properties of the detector.
Recently it has been proposed to add 5% N2 [4].

6 Introduction

Figure 1.3: Illustratioin of the Time Projection Chamber [4].

To obtain to position where the electrons hit the end caps of the chamber, each end cap
is divided into pads. In total the TPC has approximately 560000 pads where charges can be
detected. Each pad or channel is sampled and readout by electronics that will be described in the
next chapter.

A lot of information can be obtained about the particles that has travelled through the TPC
by studying their tracks. When charged particles moves in a magnetic field they will experience
a force perpendicular to their direction of movement. In addition the particles will loose speed
as they ionize gas molecules. These two effects will cause the trajectories of the particles to be
bent and with a sharper curve as the particle looses speed. By analyzing the tracks it is possible
to determine momentum of the particles by looking at how much energy they loose per unit of
travelled distance.

Chapter 2

Data acquisition for ALICE TPC

2.1 Introduction
Data acquisition is the process of sampling the signals from the detector to obtain the desired
information about the physical processes that are being observed. The ALICE data acquisition
system acquires huge amounts of data for later analysis. Data are captured from the detectors at
rates of hundreds of GB/s while the maximum rate of the permanent storage is 1.2 GB/s. One
of the challenges of the data acquisition system is to filter and select which data should be kept
and stored.

There are three main components in play for the ALICE data acquisition:

Front End Electronics (FEE) Includes all electronics that sits directly connected to the detec-
tors. It samples and digitizes the detector signals, performs some signal processing, buffer
and push data to the DAQ-system.

Data Acquisition (DAQ) system This system receives the data streams from the FEE. The cap-
tured data is transmitted in optical fiber channels from the detector and up to the DAQ
receivers which are located in the counting rooms.

Trigger system Initiates the data capture in the FEE makes sure that only the most interesting
events are readout and pushed to the DAQ system. All events that are readout will be
labeled by the trigger system. It is crucial for the coordination of the sub detector systems
of ALICE and controlling the data flow.

The schematic diagram in figure 2.1 gives an overview of the system but it includes only the
readout chain of the TPC detector. The readout chains of the other sub detector systems that
are planned to utilize a Busy Box are identical. The Busy Box is a system whose purpose is to
verify the data transfer from the FEE to the DAQ system and to prevent overflow in the buffers
of the FEE. The purpose and functionality of the Busy Box and the other components will be
elaborated in the following sections.

8 Data acquisition for ALICE TPC

System
Trigger

Electronics
End
Front

Chamber

Time

Triggers

Eve
nt

 d
at

a

Input from trigger detectors

Trig
ge

rs

Projection

Bus
y

Detector

Experiment Hall

Data
Acquisition

Trigger
Level
High

Counting Rooms

Data
storage

EventID

Busy Box

Figure 2.1: Illustration of the data flow and the trigger system for the ALICE TPC.

The counting rooms, where some of the components are located, are compartment crates that
are placed in the vertical tunnel down to the experiment hall of ALICE. The counting rooms
will not be exposed to ionizing radiation from the collisons as all the components that are in the
experiment hall will be. The FEE which is located inside the L3 magnet must also deal with the
magnetic field. No materials wih magnetic properties can be used inside the L3 magnet.

2.2 Front End Electronics (FEE) of TPC
The data acquisition starts at the FEE. The two endcaps of the TPC contains 557568 pads in
total. When the trigger system confirms a collision in the detector by issuing a Level 1 trigger,
the analog signals from these pads are sampled and digitized by the FEE. To capture a complete
event the FEE of the TPC must sample the detector signals from the pads during the entire drift
time of the TPC which is approximately 100 µs.

Each endcap is divided into 18 sectors and each sector is divided into 6 patches as shown in

2.2 Front End Electronics (FEE) of TPC 9

18 20202025 18

Number of FECs

Figure 2.2: The end cap of the TPC divided into sectors and patches.

Trigger
System

PASA ALTRO

Front End Card

F
ront E

nd B
us

x18−25

Readout Contol Unit

DAQ

DCS Board

SIU

FPGA

DDL

Ethernet
DCS

TTC

128 D
etector pads

x8 x8

Figure 2.3: Schematic overview of the components of the Front End Electronics of the Time
Projection Chamber.

figure 2.2. Figure 2.3 shows an overview of the components of the FEE that are applied to each
patch. In total the TPC has 216 patches.

2.2.1 Front End Card (FEC)
The FEC is a circuit board that hosts a number of Integrated Circuits (ICs) to sample, digitize,
process and buffer signals from the pads. The number of FECs used for each patch is shown in
figure 2.2. As can be seen in the figure the density of FECs, and thus pads, varies and the pad
density is highest in the innermost patches of the sector. This is because the track density will be
higher in this region and a higher resolution is thus required to be able to reconstruct the event
properly in this region.

There are two different Application Specific Integrated Circuits (ASICs) involved in the data
chain. The Preamplifier and Shaper ASIC (PASA) is an analog ASIC that amplifies and shapes

10 Data acquisition for ALICE TPC

the raw signals from the pads before they are sampled by the ALICE TPC ReadOut (ALTRO)
chip [5]. The ALTRO chip is an mixed signal ASIC with integrated 10 bit Analog to Digital
Converters (ADCs) and will sample the signals at 5 or 10 MHz rate. The samples are run run
through a pipeline where signal processing is performed in five steps before the data are stored
in on-chip memory. The signal processing includes baseline reduction, 3rd order digital filtering
and zero suppression. The ALTRO can buffer up to 4 or 8 events depending on the sample rate
but independent of the data reduction. Even if the signal processing reduces the event data size
to a tenth of the original size the event will still occupy one buffer slot [6].

Each PASA and ALTRO chip can operate on 16 channels independently. Each FEC hosts
eight pairs of these chips and is able to capture signals from 128 channels and in total 4356 FECs
are used for the ALICE TPC.

2.2.2 Readout Control Unit (RCU)

As the name implies the RCU is responsible for controlling the operation of the FECs and the
readout from the FEC buffers to the DAQ system. There is one RCU for each patch on the TPC,
resulting in 216 RCU boards. The RCU is based on FPGA technology and interfaces with the
FECs, DAQ, Detector Control System (DCS) and the trigger system.

The RCU will decode the triggers received via the TTC system and forward the triggers
to control the FECs. As outlined earlier, the FEC of the TPC should initiate data capture upon
reception of a Level 1 trigger and the current buffer should be flagged for transmission to the DAQ
system if the sequence ends with a Level 2 Accept message. The RCU will continuously, event-
by-event, readout the flagged buffers from the ALTROs and transfer them to the DAQ system
via the DDL system. For each event that is transfered to the DAQ system the RCU prepends a
Common Data Header (CDH). The CDH contains information about the corresponding trigger
sequence, including the event ID.

In addition to controlling the data capture and the readout to DAQ, the RCU is also respon-
sible for configuring and monitoring the FEE. The configuration data can be sent to the RCU in
one of two ways. Either via the DCS system or via the DDL system.

Access to the FECs is provided by a bus, named the Front End Bus. The Bus is composed of
40 bi-directional lines and 8 control lines [5]. The data are sent to DAQ with a Source Interface
Unit (SIU) optical data adapter, described in section 2.3. The SIU is mounted on the RCU board
as an add-on card. The RCU will continuously read the buffers of the ALTROs and transmit the
content to DAQ.

2.3 Detector Data Link (DDL)

The DDL utilizes optical fibers to transfer data at high rates from the FEE to the DAQ system.
One link contains two fiber channels and can transfer 200 MB/s in both directions simultane-
ously. ALICE uses almost 400 DDLs where 216 out of these are used for the TPC [7]. The DDL
system can also be used to transfer configuration data to the FEE.

2.4 Data Acquisition system 11

Figure 2.4: Picture of the D-RORC with two optical transceivers (SIU/DIU) and two LVDS ports.

The DDL system is composed of three parts; the optical fibers, a SIU and a Destination
Interface Unit (DIU) [7]. The SIU units are mounted on the RCU boards and the DIU units are
mounted on special receiver cards for the DAQ.

2.4 Data Acquisition system

On the DAQ side, special Read Out Receiver Cards (RORCs) have been designed to receive
the data from DDL. The RORC includes one or two DIUs and is designed as PC card with a
Peripheral Component Interconnect (PCI) interface. Up to six of these cards can be installed in
a regular computer called a Local Data Concentrator (LDC). The use of commercial hardware is
very desirable because it reduces the total costs of the system considerably. The RORC utilizes
its own Direct Memory Access (DMA) controller to write data directly to the main memory of
its host computer with a minimum load on the Central Processing Unit (CPU) [8].

The RORC exists in two different versions, the pRORC and the DAQ Read Out Receiver
Card (D-RORC). The pRORC has only one DIU while the D-RORC have two. Figure 2.4 shows
a picture of the D-RORC. When receiving data from a sub detector whose data is to be analyzed
by the High Level Trigger (HLT), the extra DIU on the D-RORC will be used as a SIU and the
incoming data will be copied and transferred to the HLT [9].

Computers with RORCs are called LDCs. They will merge event data fragments from the
D-RORCs to sub-events. Through a network of computers the sub events are merged until they
reach the Global Data Concentrator (GDC) where the event data will be complete. From here the
data will be transferred to CERN’s storage facility for permanent storage and later analysis [10].

The data transfer from the RCU to the D-RORC will go on as long as there is event data in
the buffers. However the capacity of the event building network may get saturated. In this case
the RCU will see the DDL link as busy and the transmission must wait even if there are more
data to be shipped [11].

12 Data acquisition for ALICE TPC

Table 2.1: Latencies associated with different trigger levels in the CTP.
Signal Status L0 (µs) L1 (µs) L2 (µs)
Last trigger input at CTP 0.8 6.1 87.6
Trigger output at CTP 0.9 6.2 87.7
Trigger output at detector 1.2 6.5 88.0

2.5 Trigger system
The trigger system will make sure that the FEE only captures data when interesting events occurs
in the detector. By issuing different triggers the system can start, abort and verify data capturing
of events in the FEE. The sub detector systems of ALICE are arranged in to six clusters. The
trigger system can be configured to only trigger data capture in only a subset of these clusters [9].
The CTP is the source of all the hardware triggers in ALICE. It is placed in the same racks as the
Local Trigger Units (LTUs) for the detectors in the experiment hall. The LTUs will forward the
triggers from the CTP to the FEE of their detector systems.

2.5.1 Central Trigger Processor (CTP)
The CTP is located in the experiment hall, outside of the L3 magnet. Several sub detector systems
feeds the CTP with the required information to make decisions about which triggers should be
issued to the FEE. The CTP uses three levels of triggers to control the FEE : Level 0, Level 1
and Level 2 [9].

2.5.2 Trigger sequences
The triggers are issued in sequences. For a sequence to be valid it must follow the rules outlined
in the following paragraphs.

The Level 0 trigger is the fastest of the triggers (see table 2.1) and must arrive at the detectors
1.2 µs after the time of impact. The Level 0 trigger only indicates a collision in ALICE. Some
detectors will start to capture data right away while others wait for the Level 1 trigger. For the
TPC for example, it will take some time before the drifting electrons reach the endcaps and
therefore the FEE will initiate data capture on a Level 1 trigger.

The Level 1 trigger must reach the FEE 6.5 µs after time of impact and confirms the collision
that the Level 0 first indicated. The Level 1 is based on more physical parameters about the
collision, for example the multiplicity of the collision. If the requirements for the Level 1 trigger
is not met in the CTP, the Level 1 will not be issued. This results in a timeout for the Level 1
trigger in the detectors and the trigger sequence is aborted and hence data capture will be aborted
in the detectors.

If a Level 1 trigger is issued the sequence must end with a Level 2 trigger message to be valid.
The Level 2 trigger message is the last in the trigger sequence and will tell if the past-future
protection of any of the detectors has been violated. The criteria for the past-future protection

2.5 Trigger system 13

is programmable in the CTP, but if it is violated a Level 2 trigger message with a Reject flag
will be issued. This causes the FEE to abort data capture and to overwrite the data on the next
trigger sequence. Otherwise the Level 2 trigger message will be issued with an Accept flag 88
µs after the time of impact, which is about the same as the drift time for the TPC. When the FEE
receives a Level 2 Accept trigger message, it will finish the data capture and mark the event data
for transfer to the DAQ backend.

2.5.3 Past-future protection
The collisions at the interaction point and also unwanted interactions between the accelerated
particles and gas molecules occur randomly in time. For some detectors this causes compli-
cations and this is especially the case for the TPC. The long drift time of the TPC makes it
vulnerable some time before and after the collision. Any charged particle traveling through the
chamber will leave a track and tracks from particles that do not originate from the collision we
want to record will contaminate the event. For this reason the CTP will not trigger on collisions
if there has been activity in the past and it will issue a Level 2 Reject trigger message if too
much activity is detected after (future) the collision. If collisions occur after the initial triggered
collision it is referred to as pile ups in the detector. The algorithms that analyze the event data is
able handle a certain number of pile ups and this a programmable parameter in the CTP.

2.5.4 Timing, Trigger and Control (TTC)
The TTC is a system of optical fibres and electronics used to distribute triggers and a reference
clock signal to all detectors at low latencies. The source of the optical signal is the LTU and from
there it will be distributed to all of the FEE through a network of optical fibers and splitters.

Two trigger channels and the global LHC clock are distributed by the TTC system. The
channels are modulated together with the clock in the optical signal. Channel A is used to
broadcast trigger pulses for Level 0 and Level 1 while channel B is used to broadcast trigger
messages for Level 1 and Level 2 triggers. The LHC global clock is synchronized to the nominal
bunchcrossing rate of the LHC and runs at 40.08 MHz. This clock is used as the reference clock
for all the digital electronics in the ALICE experiment.

2.5.5 Event ID
When the trigger system issues a trigger sequence the captured event data must be given an ID so
that event fragments from all sub detectors can be identified and combined to a complete event.
The event ID will be generated by the trigger system and broadcasted along with the triggers as
part of the Level 2 trigger messages on the TTC system.

The event ID is 36 bits in length where the first 24 bits are the orbit ID and the 12 remaining
bits are the bunchcrossing ID. The bunchcrossing ID is a count that is incremented at the nominal
bunchcrossing rate of the LHC. It is reset when the bunches have made a full round trip in the
accelerator ring. When the bunchcrossing count is reset the orbit count is incremented. When
two bunches cross each other at the interaction point they will have to travel the same length

14 Data acquisition for ALICE TPC

Table 2.2: Number of D-RORC cards per detector.
Detector # D-RORCs Panel height

TPC 216 5U
PHOS 20 1U
EMCal 24 1U
FMD 3 1U

before they meet again at the same point. Thus the bunchcrossing ID will be the same each time
they meet but the orbit ID will be incremented.

2.6 Busy generation
Even with the high capacity of the DAQ system, the FEE of some detectors will sometimes
produce data faster than can be received. This will eventually lead to a situation where the
buffers of the FEE are full when new triggers are issued by the CTP. Hence the CTP needs to
know in advance when the buffers are full and the whole detector system must be considered to
be busy.

The topic of this work is the Busy Box, which is a device that is able to determine the busy
state of a detector system by communicating with the trigger and DAQ systems. It will verify
that each event that has been triggered is successfully transfered to the DAQ system and thus it is
able to keep track of how many events are unaccounted for. The number of unaccounted events
will then translate to the number of used buffers in the FEE and lets the Busy Box determine the
busy state of the detector system.

The Busy Box is a independent system that will be placed in the counting rooms near the
LDCs for the detector system it is monitoring. This ensures short communication cables to
the DAQ system and easy access if problems should arise. Also, by placing it in the counting
rooms rather than the experiment hall, the device does not need to be radiation tolerant. Using
a dedicated device for the busy generation gives better modularity for the overall system so that
the development of the different systems can be done more independently.

To avoid being a bottleneck for the readout rate of the detector systems the Busy Box system
must be able to verify events at a higher rate then the maximum readout rate of the detectors.
These rates are not always clear but a verification rate of at least 1 kHz should be well within
the requirements for the detector systems where the Busy Box will do the busy generation. The
Busy Box will be used for the TPC, PHOS, EMCal and FMB sub detector systems. Table 2.2
lists the detectors and how many D-RORCs are used in the DAQ system for each detector.

2.7 About this work
This report describes the work that has done in developing the ALICE Busy Box which is a
component in the data acquisition system of ALICE. The development of the Busy Box includes

2.7 About this work 15

the work of several students and employees of the microelectronics group and the nuclear physics
group at the Institute of Physics and Technology at the University of Bergen. Also personnel at
CERN have contributed with specification requirements and integration into the ALICE data
acquisition systems.

At the time I was included in the project the overall structure and functionality had been
outlined. The circuit board had been designed and produced and the components was currently
being mounted. My first involvement in the project was to cooperate with the board designer,
Anders Rossebø, in the early stages of planning the firmware implementation of the required
functionality. Anders was at this time at the very end of his masters thesis and when he graduated
he was hired to finish the hardware by integrating the boards into rack cases and including power
supply units.

Meanwhile, I was given the responsibility of the further firmware development. This work
can be summarized in three phases.

• Testing the newly produced hardware and debug programming interfaces. Some minor
design flaws were identified on the board that affected the functionality.

• Development of a robust serial communication with the D-RORCs. This work has in-
cluded investigations of serial communication protocols, implementation and testing, and
debugging with hardware test setups, both at CERN and in Bergen. This phase required
several iterations before a satisfactory solution was achieved.

• Designing and implementing the complete firmware. At first this included an interface for
the software on the DCS board to communicate with all the D-RORCs over the serial links.
Later on, all the basic operation has been implemented in firmware to meet the timing
requirements of the system. This work has also included defining the basic procedures
both on the D-RORC and the Busy Box that are required for the Busy Box to set the busy
signal correctly.

The operation of the firmware will be controlled and monitored by software running on the
DCS board. During this work I have cooperated closely with Are Stangeland which is responsible
for developing the software for the Busy Box. Are has also contributed a great deal in clarifying
and defining the system requirements.

I have done all of the firmware development for the Busy Box except for the Trigger Receiver
Module which has been designed by Johan Alme (see figure 5.1).

During the development I have had three trips to CERN. On my first trip I spent two weeks
working on the cabling on the TPC. The other trips have been for for testing and integration of
the Busy Box.

Prior to the Busy Box project I have been involved in two other projects. The first was the
Cosmic Ray Telescope where I was responsible for the firmware for a FPGA in the readout
electronics. The second was the TriggerOR board for the PHOS detector of ALICE. This board
and firmware for the FPGA on it was designed by four students from Bergen University College.
However the board had not been produced when they were finished. My task was to simulate
and verify the firmware, test the hardware and eventually integrate the board at CERN. However

16 Data acquisition for ALICE TPC

the PHOS project was delayed and thus the integration of the TriggerOR was also delayed, so I
switched to the Busy Box project in December 2006.

In addition to the work presented in this report I have also written an article about the Busy
Box in close cooperation with Are Stangeland. The article was published in the FPGAworld
2007 proceedings and I was present at FPGAworld conference and did a presentation based on
the article.

Chapter 3

Busy Box

This chapter describes the hardware. It includes some discussions why this hardware was chosen
and give an overview of how the system is intended to work. A lot of this information is taken
from [12].

3.1 Busy Box hardware

The first step in designing the Busy Box is to define the requirement specifications and make
sure that all aspects of the design are covered. An analysis of the system described in chapter 2
reveals the following requirements:

• The Busy Box needs an interface to the TTC system so that it is able to receive the same
trigger information as the FEE. This implies having an optical receiver and electronics to
decode the channels integrated in the system.

• A reliable two-way communication link with all of the D-RORCs of the detector system it
is serving is required to retrieve the event IDs from the D-RORCs. For the TPC detector
system, which is the largest concerning number of DDLs, this implies at least 216 commu-
nication links. The D-RORC has been outfitted with LVDS serial transceivers and RJ-45
ports for communications with the Busy Box and thus the Busy Box needs at least 216
RJ-45 ports and LVDS I/O drivers. The Busy Box will be placed in the counting rooms
next to the LDC for the corresponding detector and thus the maximum cable length will
not exceed 15 meters.

• The Busy Box needs a line to the LTU to provide it with the busy-signal. The LTU is
located in the experiment hall while the Busy Box is in the counting rooms 50 to 100
meters above.

• An interface to the DCS is required so that the operation of the Busy Box can be monitored,
controlled and configured by the DCS system.

18 Busy Box

Optical fibre

Interconnect

120 LVDS links96 LVDS links

Busy

Trigger, Timing and ControlDetector Control System

CPU

Linux

10 Mbits Ethernet

16 bits bus

Triggers and clock

TTCrx

FPGA
Virtex−4 Virtex−4

FPGA

DCS board

Figure 3.1: Busy Box system overview.

• Sufficient processing power is required to compare and keep track of all the event IDs
received from the D-RORCs and the trigger system within the time window of a trigger
sequence. This processing must be fast enough so that the Busy Box does not become the
bottleneck of the entire system.

3.2 System overview
Some components of the design are predetermined by the systems it has to interface with. The
design is also influenced by the experience gained with the development of the RCU board.

As with the RCU, the system is based on FPGAs to implement the required digital electronics
and it has a DCS addon board. To obtain the high number of I/O drivers required two FPGAs
with LVDS capable I/O pads are included. The FPGAs will also provide all the logic resources
required to implement serial transceivers, decoding of the signals from the TTCrx and any pos-
sible processing required. The DCS board brings many other features to the system. It includes
a miniature computer with Linux OS, an optical receiver and a TTCrx chip.

Figure 3.1 shows a simplified block diagram of the Busy Box system. The signals from the

3.2 System overview 19

Figure 3.2: Picture of the Busy Box in a one unit 19” rack case. (Photo: C. Soos)

TTCrx chip are connected to the FPGA where logic to decode the serial channel A and B can
be realized. The clock provided by the TTC system will be used as clock source for all digital
electronics, including the FPGAs.

The two FPGAs will work independently and the FPGA that drives the busy signal will get
the busy state from the other FPGA via dedicated interconnect signals between the FPGAs.

The serial communication with all the D-RORCs will be handled by the programmable logic
in the FPGAs. Since some of the detectors where the Busy Box is will be used utilize only a few
DDLs the second FPGA can be left out when mounting components to the circuit board. For this
reason the number of LVDS I/Os on the first FPGA have been maximized within the constraints
of the I/O bank configurations on the FPGA. More details on this is given in section 3.5.1. As a
result the first FPGA is connected to 120 of the RJ-45 ports connected while the second FPGA
is connected to the 96 remaining.

The picture in figure 3.2 shows a Busy Box built in one unit rack case. From right to left
of the front panel are LEMO connectors for the BUSY-signal, four Light Emitting Diode (LED)
indicators and the 40 RJ-45 connectors. The picture in figure 3.3 shows a Busy Box with the lid
off so the internal components are visible. A large PCB is needed to host all the components for
the system. The board has been designed so that one of the two FPGA can be left unmounted to
increase the scalability of the system. The DCS board is mounted on top of the Busy board to the
left. The white connectors on each side of the FPGAs are used to connect add-on boards called
mezzanine cards with additional RJ-45 connectors. To fit enough RJ-45 connectors in the front
panel of the box, four mezzanine cards must be connected, making the box five units in height of
standard 19” racks. The Busy Box will be placed in racks in the counting rooms near the LDCs.

20 Busy Box

Figure 3.3: Picture of the Busy Box with the lid off to show the internal components. (Photo: A.
Rossebø)

3.3 DCS board 21

3.3 DCS board

The DCS board is one of the add-on boards used on the RCU and was developed for the FEE of
ALICE to be part of the DCS system. It is mainly composed of an Altera EPXA1 FPGA (includes
a 32 bit hard core ARM processor), 8 MB of flash ROM, 32 MB Synchronous Dynamic RAM
(SDRAM) and an Ethernet transceiver. With these components it is able to run a lightweight
version of Linux Operating System (OS) and implement the TCP/IP network protocol. Each
DCS board runs a FEE server that interfaces via a parallel data bus with the system it is integrated
in and provides services to connected clients such as housekeeping data about the system.

The DCS board on the RCU also has an interface to the programming logic in the FPGA and
is thus able to load configuration data into the FPGA. This is feature that is very useful for the
RCU boards as they will be physically unaccessible and in an radiation hazardous environment
once the LHC is operational.

Another important feature of the DCS board is that it has a TTCrx chip and an optical receiver
mounted. The optical receiver will convert the optical signal received from the LTU into an
electrical signal. The TTCrx chip will demodulate the this signal and output the three electrical
signals; the LHC bunchcrossing clock, channel A and channel B.

The DCS board was included in the design because it brings a lot of features that are required
and some that will come in handy for the Busy Box. It will be mounted on top of the Busy
Box board with two 70 pin connectors. The connections are used for signals and for distributing
power from the Busy Box board to the DCS board.

3.3.1 Trigger message decoding

The signals from the TTCrx chip are routed to both the FPGAs on the Busy Box board through
the board-to-board connectors. A firmware module has been designed to decode these signals
and make all trigger information available in the Common Data Header (CDH)-format [13].

The serial channels A and B are synchronous to the BC clock so no clock recovery is required.
Channel A will contain the Level 0 and Level 1 trigger pulses while channel B will contain
complete trigger messages. A trigger message may be a broadcast message or an addressed
message. Broadcast messages include calibration pre-pulse, event count reset and bunch count
reset. Addressed messages include Level 1 Accept message, Level 2 Accept message, Level 2
Reject message and possibly a Region of Interest message if it is supported by the LTU. All
trigger messages are hamming coded for better transmission error tolerance.

3.4 LVDS driver for BUSY signal

The Busy Box is placed in the counting rooms high above the experiment hall where the rest of
the trigger system resides. The cable from the Busy Box to the LTU might be as long as 100
meters. To guarantee the required signal integrity all the way down to the experiment hall the
BUSY-signal will be transmitted in a specific type of coaxial cable and driven by an LVDS driver

22 Busy Box

(SN65LVDM31) which both are certified by CERN [12] [14]. The cable is connected to the
Busy Box and the LTU with standard LEMO connectors.

3.5 Virtex-4 FPGA
The FPGA that was found to be most appropriate for this application at the time of design was the
Virtex-4 LX-40 in the ff1148 package from Xilinx. Of the 1148 pins 640 are user programmable
I/Os that support many I/O standards including LVDS 2.5 which will be used to communicate
with the D-RORCs.

The FPGA is produced on a 90 nm copper CMOS process and the core voltage is 1.2 V.
This makes it possible to implement designs that run on clock speeds up to 500 MHz. The
logic resources are arranged in a 128x36 array of Configurable Logic Blocks (CLBs). Each
CLB includes four slices where each slice contains two Logic Cells/LookUp Tables (LUTs). In
addition the FPGA includes 64 XtremeDSP slices with fast 18x18 multipliers. For memory the
FPGA includes 96 dualport block RAMs. Each block RAM can store up to 18 Kbits depending
on the configuration.

To provide flexible clocking and synchronization Virtex-4 includes 8 Digital Clock Managers
(DCMs) and 4 Phase Matched Clock Dividers (PMCDs). The DCMs can do clock deskew, phase
shifting and frequency synthesis.

3.5.1 Virtex-4 I/O banks
The I/O pins are distributed over 13 banks where there are constraints for which I/O standards
are supported on the same bank depending on the bank supply voltage. One of the I/O banks is
reserved for the programming interfaces. The I/O banks that will be used to communicate with
the D-RORCs must support LVDS 2.5 and hence the supply voltage of these are 2.5 V. These
banks can then not include single ended signals which, for this system, require 3.3 V supply
voltage.

3.6 Virtex-4 Programming Interfaces
Virtex-4 supports different programming interfaces that allows the user to load his/her design in
to the device. For the Busy Box system the FPGAs will primarily be programmed from the DCS
board. This can be done through the SelectMAP interfaces of the FPGAs. The JTAG interface is
also made available. Both interfaces is discussed in the following sections.

3.6.1 SelectMAP interface
The SelectMAP is an interface to access the configuration memory of the Xilinx FPGAs [15].
Virtex-4 supports SelectMAP interfaces with 32 or 8 bit parallel or serial data transmission and
the FPGA can be set to be master or slave. The master modes can be used to let the FPGAs

3.7 Busy Box circuit board 23

load the contents of a Programmable Read Only Memory (PROM) into its configuration memory
upon the power on cycle. In slave mode the FPGAs will wait for another device to drive the clock
signal and load data into the configuration memory. It is possible to let the SelectMAP data lines
become user I/Os after configuration but then the device must be reset before the SelectMAP
interface is available again. To make the SelectMAP interfaces available even after the device
has been programmed it was decided to use dedicated lines for SelectMAP and the data bus.

To make room for the SelectMAP data lines in the board-to-board connectors the system bus
was reduced to 16 data lines (the RCU uses 32). The SelectMAP interface with 8 data lines can
then be used. Since the FPGAs will be programmed from the DCS board they are set to slave
mode.

The FPGA will sample the logic value of three mode pins during the power up cycle to
determine which interface is used. The mode pins for the FPGAs are pulled to logic high or
low by the Busy Box board and the configuration can be altered by mounting resistors between
different nodes on the board. For the selected interface mode (SelectMAP 8 bit slave mode) pins
M2 and M1 are pulled to logic high and M0 is pulled to logic low.

Linux kernel device drivers have been developed so that the SelectMAP interface accessible
as a device in the Linux OS [16]. The programming bit file generated by the Xilinx tools can
then redirected to the device driver which will take care of writing the configuration data to the
device.

3.6.2 JTAG interface
The FPGAs can also be programmed via a JTAG interface. JTAG is an acronym for Joint Test
Action Group after the committee that was responsible for developing the boundary scan tech-
nology, which for that reason is often referred to as Joint Test Action Group (JTAG). It is stan-
dardized in the Institute of Electrical and Electronics Engineers (IEEE) 1149 standard. Its initial
purpose was to test both Printed Circuit Boards (PCBs) and chips at board level. Later on it has
proven useful other functions as well. The JTAG interface for Virtex-4 can be used to load the
configuration data to the device and access internal logic for many other purposes, for example
the use of integrated logic analyzers.

Figure 3.4 shows the connection diagram for the two Virtex-4 FPGAs on the busy board.
When only one FPGA is mounted on the board, the jumper needs to be applied to bypass the
missing FPGA for the JTAG chain to be working. The JTAG interface can be activated at any
time and will override the mode selected by the mode pins.

To access the FPGAs a JTAG programming device is connected to the JTAG connector on
the board. The programming device is often data adapter between the JTAG and other standard
interfaces for example the parallel or USB port of a regular computer.

3.7 Busy Box circuit board
The circuit board for the Busy Box system hosts all the components and provides interconnect
and power distribution. This also includes signal lanes between the FPGAs and all the RJ-45

24 Busy Box

Virtex−4

TMS

TDI

TCK

FPGA

TDO

Virtex−4

TMS

TDI

TCK

FPGA

TDO

TCK

TMS

TDI

JTAG Header

TDO

Device 1Device 0

Jumper

Figure 3.4: JTAG connection scheme for the Virtex-4 devices in the Busy Box

connectors and the connectors for the RJ-45 extension cards. See the picture in figure 3.3.

3.7.1 Power supply
The board receives power from an external 5 Vpower supply. Three voltage regulators of type
PTH05000W from Texas Instruments are used to generate three different supply voltages:

1.2 V This is the core voltage of the FPGAs

2.5 V This voltage is used to supply some of the auxiliary components in the FPGAs and it is
used as supply voltage to the I/O banks where the LVDS standard is used.

3.3 V This voltage supplies the I/O banks that contains the pins for the configuration interface
for the FPGAs and to the banks that are used for single-ended signals.

The voltage regulators can be enabled and disabled individually with jumpers. If no jumpers
are applied the regulators are always on, by connecting two of the three pins the regulators can
be set to always off and to be controlled by signals from the DCS board. See [12]

Chapter 4

Serial Communication with the D-RORCs

4.1 Physical Layer

The physical layer of the communication channel between the Busy box and the D-RORCs is
done with LVDS in Twisted Pair (TP) cables with RJ-45 connectors. The TP cables will not
exceed 15 meters in length and provide good signal integrity by cancelling out electromagnetic
interference from external sources and crosstalk from neighboring wires. This makes the TP
cables ideal for LVDS. Figure 4.1 shows a standard LVDS application. The transmitter drives
3.5 mA through the current loop. At the receiver end, the signal is terminated by a 100 Ω resistor
which results in a voltage swing of 350 mV. The LVDS receiver will sense the voltage drop over
this resistor and drive a single-ended signal with corresponding valid logic levels. The common
mode voltage for the LVDS lines is 1.25 V.

R
T

+

−

350 mV

−

+

LVDS receiverLVDS driver

3.5 mA

3.5 mA

Data transmit

Data receive

Figure 4.1: Standard point to point LVDS Application.

The Busy Box uses the built-in IO Blocks in the Virtex-4 FPGA for LVDS I/O. Input and
output buffers are instantiated in the source code with with I/O standard specified as LVDS 25.
For the input buffers the DIFF TERM attribute is set to true which enables the internal differential
resistor in the IO Block [17]. Figure 4.2 shows how the LVDS pairs are connected in the RJ-45
connectors. With this connection scheme standard CAT-5 TP cables can be used [12].

26 Serial Communication with the D-RORCs

3

2

1

6 TX−

RX+

RX−

1

2

3

6

RX−

RX+ TX+

Busy Box DRORC

TX−

TX+

Figure 4.2: RJ-45 pin connection scheme for Busy Box and D-RORC

4.2 Serial bit-encoding schemes
To reliably transmit data over a single signal line the data bits must be encoded in the signal in a
way such the receiver can identify each bit in the stream unambiguously. Bit-encoding schemes
is a trade-off between reliability, efficiency and implementation cost/complexity.

One of the challenges is to synchronize the receiver with the incoming bit-stream. Two
devices that run on the same nominal clock frequency but do not share the same clock source are
defined as plesiochronous see for example [18]. The performance of clock sources, for example
oscillation crystals, may vary with attributes such as temperature and process variations. For this
reason the phase alignment will drift over time as one clock will be slightly faster or slower than
the other.

One way to synchronize the receiver logic with the bit-stream is to encode both clock and
data in the signal. For example Manchester coding, where a high-to-low transition indicates a
logic 1 and a low-to-high transition indicates a logic 0. The clock can then be recovered by using
a Digital Phase Locked Loop (PLL) to lock on to these transitions. The drawbacks are that this
requires twice the bandwidth compared to Non-Return-to-Zero (NRZ) encoding.

The NRZ coding scheme does not include clock information and hence the nominal bit-rate
must be known and fixed. Each bit will be transmitted by holding the line high or low for a
bit-period. If the transmitted data contains a lot of consecutive zeros or ones, there will not be
any transitions in the signal. If the phase alignment of two communicating devices exceeds 180
degrees in either direction during this time, it is impossible to know how many bit-periods have
passed. Therefore, NRZ coding is not suitable for raw bit-streams.

One approach to use NRZ is to split the data into words of fixed length and transmit it in
frames. A frame can consist of the data word proceeded by a start-bit and ended by a stop-bit.
The incoming signal is oversampled so that rising and falling edges can be detected by comparing
two consecutive samples. Typically, the receiver will detect the first edge of the start-bit and from
then on, by counting samples, select the samples that are believed to be in the middle of a bit-
period to determine the value of this bit. The length of the transmitted word must be relatively
short so that phase error will not be given time to accumulate. The phase error tolerance is
typically a function of the frame-length. This method synchronizes at the start of each frame
while the Manchester-coding synchronize on each bit.

An identical technique was implemented and tested on the Busy Box hardware. The frame

4.2 Serial bit-encoding schemes 27

included a 32 bit data word, two start-bits, one parity-bit and one stop-bit, in total 36 bits. The
communication logic ran on 200 MHz and a bit-period was 4 clock cycles resulting in a 50 MHz
bit-rate. A problem with this method became apparent when testing it in hardware; Unconnected
ports have floating inputs that picks up all kinds of electromagnetic noise. The receiver triggered
on this noise and produced a lot of garbage data. All incoming messages are stored in the same
memory in the Busy Box. When the memory is full, the oldest messages will automatically be
overwritten when new messages arrive. The garbage messages that are produced will quickly
fill the memory and make the communication unusable. Making a stricter start condition that
is less probable to occur in noise reduces the garbage data produced, but at some point real
data transmissions also gets rejected. The efforts to find a better start condition did not lead to
satisfactory compromise between the amount of garbage data produced and data loss.

To improve the performance of the serial receiver the samples are shifted into a shift register
long enough to contain a complete frame. This makes it possible to evaluate both start and stop
conditions before capturing data. In addition, the logic value of a bit is determined by running all
samples in the bit-period through a majority gate. The idea is that bad samples will be outvoted.
When using majority gates, it is desirable to to use an odd number of samples as inputs so that no
value (one or zero) has to be given precedence. Implementation of this serial receiver is discussed
in next chapter.

0 5 10 15 1009590

Start bit 2 Data bit 1 − 15 Parity bit Stop bitStart bit 1

Time (clock cycles)

Data bit 0

Figure 4.3: Illustration of serial data transmission

Figure 4.3 show an illustration of the bit encoding. The properties are summarized below.

• Serial data transmission and NRZ encoding.

• 5 clock-cycles/periods per bit. (40 MHz baudrate/bitrate) 1

• Majority function used on all samples in a bit to determine the value of this bit.

• 2 start bits, 16 data bits, 1 parity bit and 1 stop per transmitted word.

• Start bit 1 is low, start bit 2 is high, stop bit is low.

• Idle lines should be pulled logic high by transmitter.
1Number of clock cycles per bit is to be decided later on when more tests have been performed.

28 Serial Communication with the D-RORCs

4.3 Alternative solutions
Other solutions for serial data transmission have been investigated. The current implementation
of the serial receiver uses too much logic resources and an alternative is desired. A interesting
serial receiver is the digital phase follower. It is discussed in several articles around the internet
and an implementation of it in Xilinx FPGAs in presented in [19].

In the implementation of the digital phase follower the logic of the serial receiver runs on the
same nominal clock frequency as the bit stream. To obtain oversampling of the signal a second
clock which is phase shifted 90 degrees to the original clock. The signal will be sampled by
registers in both clock domain and by also sampling the signal with registers that triggers on the
falling edges of the clocks 4x oversampling is achieved.

If there is a transition in the serial signal the receiver will see where it is in the four samples
and compare it to where the transition was last time. By doing this the receiver is able to follow
the phase of the incoming bit stream relative to the system clock. If the phase of the incoming
bit stream is shifted more than 180 degrees in either direction the receiver will compensate by
producing either none or two bits of data this clock cycle.

The digital phase follower requires transitions to happen often to be able to follow the phase
correctly. This is not guaranteed with a raw bit stream. A technique that guarantees a transition
density is the 8b/10b encoding.

The 8b/10b encoding maps 256 unique 8 bit symbols to a subset of 10 bit symbols. By only
using a subset of the 10 bit symbols each of these symbols will consist of either 5 ones and 5
zeros, 6 ones and 4 zeros, or 4 ones and 6 zeros. All of the utilized 10 bit symbols have a disparity
of 0 or ± 2. The disparity is the number of ones minus the number of zeros in a symbol. The 8
bit symbols that are mapped to 10 symbols with a disparity of + 2 are also mapped to the inverted
10 bit symbol with a disparity of - 2. The encoder will always pick the 10 symbol that maintains
the running disparity to ± 1. If the running disparity is + 1 then selecting a 10 bit symbol with a
disparity of - 2 changes the running disparity to - 1 and so on. A 10 bit symbol with a disparity of
0 will not change the running disparity. This way the DC balance of the signal is maintained and
it also guarantees that there will never be more than 5 consecutive zeros or ones which guarantees
the transition density.

If the 10b/8b bit encoding was implemented in the Busy Box it would be easy to detect un-
connected ports by checking the running disparity or valid 10 bit symbols. However the encoders
and decoders must be implemented on both sides and there is not available resources to imple-
ment a decoder for each channel in the Busy Box. A possible solution is to implement several
decoders so that the undecoded messages can be gathered and decoded at one central point. At
the moment this is considered not to be worth the effort but it is a possible improvement of the
communication.

4.4 Basic operation
When the D-RORCs has received an event data fragment, the event ID is extracted from the
Common Data Header (CDH) and stored in a FIFO queue. To verify that all data fragments from

4.4 Basic operation 29

an event has been successfully transfered to the DAQ-system, the Busy Box must make sure that
all D-RORCs have this event ID in its queue. The Busy Box will maintain a queue of event
IDs received from the TTC link. If there are no errors then the event IDs in the queues in the
D-RORCs and in the Busy Box will match. Hence a principal procedure for event verification
can be defined:

1. Start out with the first event ID in the queue in th Busy Box.

2. Compare this event ID with the event ID in each D-RORC.

3. When the event ID has been matched in all D-RORCs the event has been verified.

4. Pop one event ID from the queues in the Busy Box and in all the D-RORCs and start over
again.

For this procedure to work it is critical that the queues are kept synchronized and that they
contain the same event IDs in the same order. The latter criteria is obtained by making sure that
the Busy Box and the FEE have the same way of decoding and interpreting the trigger messages
issued on the TTC-system. If the queue in one of the D-RORCs is one element ahead or behind
the queue in the Busy Box the event ID comparison will always result in a mismatch and some
high level error handling will be required to resolve the situation. A strategy for keeping the
queues synchronized even if transmission errors occur will be discussed in section 4.5.

The comparison of event IDs can be done either in the Busy Box or in each individual D-
RORC. Both cases were evaluated and the conclusion was that it is better to do the comparison in
the Busy Box for several reasons. First, it was considered a good idea to keep all the processing
in one device. Especially in the development phase it will make debugging a lot easier. Also, it
makes sense if the firmware should need an update in the future then it may only be necessary
to update the Busy Boxes and not all the D-RORCs. Second, if an error situation occurs all
the information that is needed to resolve it is kept in the Busy Box. Consequently the protocol
is based on that the Busy Box receives event IDs from the D-RORCs, does the matching and
decides when the D-RORCs should pop one element in the their queues.

The time from the Level 2 Accept trigger is issued and until the event ID is available in the
queues of the D-RORCs will vary and will be different for the individual D-RORCs as the sizes
of the data fragments vary. Also, there might be data fragments from previous triggers that has
to be transfered first. As a result the Busy Box will have to send several requests before all
D-RORCs have been verified.

Figure 4.4 shows diagram of the communication between the LTU, Busy Box, two D-RORCs
and the RCU boards of the FEE. The process of event verification is started when the Busy Box
receives a trigger sequence from the LTU that ends with a Level 2 Accept trigger. The same
trigger sequence will be received by the RCU boards as shown on figure 4.4. The RCU boards
will command the FECs to start sampling data when the Level 1 trigger is received2. At T1 the
Level 2 Accept trigger is issued which means that the event has been accepted and the RCUs

2This is true for the TPC. Other sub detectors will start data sampling at other criteria.

30 Serial Communication with the D-RORCs

BBOX DRORC 2DRORC 1LTU RCU 1 RCU 2Time

T4

T5

T6

T3

T2

T1

T0

Request

Request

Request

Event ID

Event ID

L2A

L1

L0

Event data

Eve
nt d

ata

Figure 4.4: Message sequence diagram for an event verification with two sets of D-RORC and
RCU boards.

4.5 Transmission error handling 31

will mark the current buffer for transmission to the D-RORCs. The Busy Box will also see the
Level 2 Accept trigger and start requesting event IDs at T2. Since none of the D-RORCs have
received this event yet they don’t reply. At T3 RCU 1 has finished transferring the event data
fragment and D-RORC 1 has extracted the event ID and put it in its local queue. The Busy Box
will periodically send new requests by a programmable time interval. At T4 the Busy Box sends
a new request and D-RORC 1 will reply with the event ID. At T5 the other event data fragment
has been transferred to D-RORC 2. At T6 the Busy sends requests to D-RORCs that it has not
yet received a correct event ID from. D-RORC 2 replies and the event have been verified if the
event IDs match and these are the only two DDL channels monitored by the Busy Box.

If a new trigger sequence is issued before an event has been verified the event IDs from the
new trigger sequence will stack up in the queues and be verified in turn. The D-RORCs can be
programmed to pop an event ID from their queue whenever they reply to a request from the Busy
Box. Since the Busy Box will not send new request to D-RORCs that have replied with a correct
event ID before the next event ID is requested, the queues will stay synchronized. However this
requires 100 % integrity for the communication and that the event IDs always match. If a D-
RORC replies to a request from the Busy Box and the event ID does not match or the message
is lost in transmission, the Busy Box will send a new request. Since the correct event ID has
already been thrown away (popped from the queue), the D-RORC will never reply with a correct
event ID. The result is that the D-RORC will continue to pop event IDs as the Busy Box keeps
sending requests. This will continue until the Busy Box asserts busy-signal because the buffers
of the FEEs are believed to be full. The next section will discuss a strategy to prevent this error
situation even if transmission errors occur.

4.5 Transmission error handling
Testing and experience suggests that it is likely that transmission errors will occur during a LHC
run. A LHC run may last for several hours and the planned average rate of of events for ALICE
is 200 Hz. This quickly sums up to millions of events per run. Taking into account the number of
DDL links and the number of messages that has to be transmitted for the verification of one event
for one DDL link, the total number of messages transmitted between the D-RORC and Busy Box
can reach a billion.

There are several well documented approaches to making a system more tolerant to transmis-
sion errors. However the LVDS communication system of the Busy Box is somewhat unique.
Even though there exists a two-way, full duplex communication channel to each D-RORCs, the
receiving and transmitting parts of each channel has been implemented in two different sub mod-
ules. Transmission error handling protocols like Automatic Repeat reQuest or similar are based
on acknowledgements from the receiver to the transmitter that a frame has been successfully
received and a timeout in the transmitter after sending a frame before resending if an acknowl-
edgement has not been received. Such an protocol would be hard to implement on the Busy Box
because the receivers do not have a direct way for sending an acknowledgement to the transmit-
ter. The implementation of the transmitter module in the Busy Box is not very efficient when
sending messages to individual D-RORCs as is explained in section 5.5. Hence the protocol

32 Serial Communication with the D-RORCs

implemented should not include lots of individual messaging to the D-RORCs.
An approach that is considered suitable for the Busy Box is to let the top level protocol be

tolerant to lost messages. The communication between the two devices is very simple with one
type of request and one type of reply. Requests can be sent multiple times until a correct event ID
is received. The challenge is to keep the event ID queues synchronized. The protocol described
in section 4.4 would recover if the request from the Busy Box is lost. A new request will be
sent to the D-RORC at the next iteration. More severe consequences will follow if the D-RORCs
reply is lost and the D-RORCs throws away the event ID. Then the event ID queues will come
out of sync as described earlier.

To keep all the queues synchronized the Busy Box generates a request ID each time it pops
a new event ID from the queue of event IDs received from the TTC. The request ID is included
in the requests that are sent to the D-RORCs. The D-RORCs will remember the request ID from
the last request and compare this with the request ID in the new request. If the IDs match it
implies that the Busy Box has not popped an event ID and neither should the D-RORC do. If the
ID does not match it implies that the Busy Box has verified the event and is now requesting the
next event ID. For extra security the request ID generation can be deterministic so that the next
ID is known. The D-RORC can then check if the newly received request ID matches the ID that
is next in line. This will prevent requests with an corrupt request ID causing the D-RORC to pop
an event ID incorrectly. However this is not likely to happen since corrupt messages should be
detected and discarded by the parity check.

To summarize, the transmission error handling for the system is based on two abilities.

• Corrupt messages will be detected and discarded.

• The system will recover if messages are lost.

Figure 4.5 shows the decision flow for the D-RORC. As can be seen in the figure, there are
three possible outcomes when a request from the Busy Box is received.

No reply. If the Busy Box requests a new event ID but none is available yet there is no need to
send anything as a new request will be sent automatically. The request ID register should
not be updated since the D-RORC have not popped an event ID.

Resend last message. If the received request ID matches the currently stored request ID it im-
plies that this event ID has already been sent to Busy Box but for some reason it is re-
requested. In any case it is safe to retransmit the last sent message.

Pop queue and send new event ID. If the Busy Box has generated a new request ID it implies
that the Busy Box has moved on to a new event ID. The old event ID should be popped
and the new should be transmitted to the Busy Box.

Figure 4.6 shows the sequence diagram for the Busy Box. This includes the basic operation
that is implemented in firmware. The procedure outlined by this diagram lets the Busy Box
perform the process of event transfer verification. By including the request ID in the process it
should be possible to recover if any messages are lost in transmission.

4.5 Transmission error handling 33

Pop EventID from Queue

Update output buffer

Start : Received message from Busy Box

Yes

No

No

Yes

New Request ID?

New Event ID available?

Transmit output buffer to Busy Box

Store received Request ID

Figure 4.5: Sequence diagram for the D-RORC

34 Serial Communication with the D-RORCs

EventID in queue?

Request EventID from DRORCs

Start timer

Process Incoming messages

Update status registers

Event Valid?

Timeout?

Update masking vector

Increment Retry counter

Retrys >= limit?

Update error registers

Pop EventID from Queue

Yes

No

Yes

No

Yes

No

Generate Request ID

Reset status registers

Yes

No

Start

Wait for DCS intervention

Figure 4.6: Sequence diagram for the Busy Box

4.6 Messages 35

4.6 Messages
Messages from the D-RORC must contain a 36 bit event ID. This already requires three 16 bit
words. The message is 48 bits in length and will be transmitted as three 16 bit words that will be
concatenated at the receiver. In addition to the event ID a message contains the D-RORC ID and
a Request ID. The D-RORC ID is register that is set in each D-RORC to give it an unique ID.
The Request ID is an ID generated by the Busy Box that is used to control the event ID queues
in the D-RORCs. The bit-mapping for the D-RORC messages are defined in table 4.1.

Table 4.1: Bitmapping for D-RORC messages
47 - 44 43 - 32 31 - 8 7 - 0
Request ID Bunch Count ID Orbit ID D-RORC ID

In general the Busy Box requests and the D-RORCs reply. Requests from the Busy Box is a
single 16 bit word. The bit mapping is defined in table 4.2.

Table 4.2: Bit-mapping for Busy Box messages
15 - 12 11 - 8 7 - 0
Command type Request ID Unused

Table 4.3 lists the different commands or requests currently defined. Under normal operation
the Busy Box will send the Request Event ID to the D-RORCs. Since the time taken to push a
data fragment from the FEE to a D-RORC varies, the Busy Box will start requesting event IDs
before it is available in the D-RORC. If there is no new Event IDs available the D-RORC should
not reply anything as the Busy Box will keep sending out new requests until it has received valid
replies from all D-RORCs.

The remaining three commands are meant for debugging and error handling. Resend last
message commands the D-RORC to retransmit whatever message it last transmitted to the Busy
Box. Force pop Event ID will force the D-RORC to pop one event ID from it queue without any
checking of request ID.

Table 4.3: Busy Box commands
Command type Bit Code Description
Request Event ID 0100 Request an Event ID from the D-RORC.
Resend last message 0101 Command the D-RORC to re-transmit the last

message sent.
Force pop Event ID 0110 Command the D-RORC to pop one Event ID

from its local queue.
Force Request ID 0111 Command the D-RORC to store the attached Re-

quest ID.

36 Serial Communication with the D-RORCs

Chapter 5

Implementation

5.1 Introduction
All firmware modules have been written in the VHSIC Hardware Definition Language (VHDL).
The blockRAM modules and also the FIFO memory modules that are used in the design have
been generated with the Xilinx coregen tool.

5.2 Overview
Figure 5.1 gives an overview of the top level module of the firmware. Another module is built
around this top level module that instantiates Virtex-4 primitives such as I/O buffers and a DCM
for clock deskew and synthesis. The DCM will provide synchronous 40 and 200 MHz clocks
derived from the BC clock received from the TTCrx chip on the DCS board.

Since the FPGA does not support internal tristate drivers a separate module (named DCS
Bus Arbiter and Address Decoder in the figure) has been designed to create a bridge from the
DCS bus interface to internal sub modules. The module is responsible for the asynchronous
handshaking and keeping the data signals at high impedance at all times except for when data
has been requested from the DCS board.

The receiver module contains up to 120 serial receivers depending on a global generic that
can be set at the top level of the design. Serial data will be decoded into 48 bit words with
an additional 8 bit to indicate the channel number which it was received on. This data will be
moved to both the RX memory module and to the event verification module. The RX memory
module includes four Block RAMs and can store 1024 of the latest received messages from the
D-RORCs. It provides a FIFO-like interface to receive incoming messages and a Random Access
Memory (RAM) interface to the DCS side.

The transmitter module only contains one serial encoder that will transmit on all channels to
all D-RORCs that are not masked away by a masking vector. The module accepts requests from
both the DCS bus and the event verification module.

The Trigger Receiver module decodes the signals from the TTCrx chip and generates trigger
messages and pulses. The pulses will be used by the Busy Generator to count used buffers and

38 Implementation

BUSY signal to LTU
120 single ended signals 120 single ended signals

to LVDS output buffers

DCS bus interfaceSignals from TTCrx

from LVDS input buffers

Control and Status Registers

Event ID verification module

Trigger receiver module RX memory module

Transmitter module

Receiver moduleBusy Generator

DCS bus arbiter and address decoder

Figure 5.1: Overview of Busy Box firmware modules.

set the BUSY signal while the trigger messages will be used by the event ID verification module.

The event ID verification module will extract the 36 bit Event ID from the trigger message
produced by the Trigger Receiver module and store it in a local queue for verification. A state
machine will start the verification process by sending requests to all D-RORC via the transmitter
module. The incoming replies are buffered and processed. Status registers for the current Event
ID are updated as the D-RORC messages are being processed. A large logic gate on the status
registers will indicate when the Event ID has been verified. The state machine will then generate
a pulse and return to its initial state waiting for new Event IDs to enter the queue. The pulse
created is read by the Busy Generator which will decrease its counter of used buffers in the FEE
every clock this signal is asserted.

Finally, the Control and Status Registers module provides an interface from the DCS bus
module to internal status and control signals. These signals are not shown on the figure but
connects to most of the other modules. One important register which is held inside this module
is the CHannel ENable (CHEN) register. One bit for each channel can be set to enable or disable
that channel. This will disable the serial receiver and also exclude this channel in the verification
process.

5.3 DCS bus arbiter and address decoder 39

5.3 DCS bus arbiter and address decoder
The parallel DCS bus between the DCS board and FPGAs on the busy board are based on an
asynchronous handshake protocol. The DCS board acts as the bus master while the FPGAs acts
as slaves. The bus, from now on referred to as the DCS bus, has 16 bits data and 16 bits addresses
in addition to control lines. It is the same interface as is used between the DCS and RCU boards
except for that the RCU bus have 32 data lines. Figure 5.2 illustrates a read and a write action.

Reading Writing

Time

DATA

ADDRESS

ACK_N

RnW

STROBE_N

Figure 5.2: Read and write transactions on the DCS bus

The asynchronous handshake is done with the STROBE N from the DCS board and the
ACK N from the busy board. These signals are sampled through 3 registers on both sides before
they are evaluated to avoid metastability in the internal logic. This delay ensures that all other
signals will have time to stabilize before they are sampled. The RnW signal indicates if the bus
master(the DCS board) wants read the contents of a register or to write the content of the data
lines to that register address.

The data lines are connected to in/out capable ports with tristate drivers. When reading one
of the FPGAs on the busy board will drive the data lines, and when writing the DCS board drives
them.

Table 5.1: Bit-mapping of DCS bus address
15 14 - 12 11 - 0
FPGA address Module address Sub module address

Since there are two FPGAs on the DCS bus, the MSB of the address is used to select which
FPGA to communicate with. The next three bits are used to address a specific module in that
FPGA and the remaining are used to address registers or memory locations of that module.

If the address given by the DCS board does not point to any of the internal modules, the re-
quest will be ignored. Otherwise an edge detector will detect a falling edge on the DCS strobe n

40 Implementation

DCS_strobe_n

DCS_ack_n

module_address

module_RnW

module_data_out

module_data_in_3
module_data_in_2
module_data_in_1
module_data_in_0

module_en_0
module_en_1
module_en_2
module_en_3

12

16

16

16

16

16

DCS_data
16

16

DCS_RnW

DCS_address

Figure 5.3: Overview of the interface of DCS bus arbiter and address decoder.

and generate a module enable signal that will be sent to the addressed module and the DCS ack n
will be pulled low next clock cycle to acknowledge the request. The addressed module is then
responsible for handling the request within the next clock cycle.

The bi-directional data lines are split into data out and data in signals for each connected
module. The three module address bits is used as a select signals for the multiplexer that redirects
the module enable signal and for the multiplexers that select the correct data signals from the
internal modules. The 12 bits sub module address, the data and the RnW signals are passed on
to the modules without any modifications.

5.4 Receiver module

5.4.1 Serial Receiver
The serial receivers of the Busy Box receives 3 x 16 bit words. It is built up by a serial receiver
for a 16 bit word (excluding the frame and parity) and an outer state machine that makes sure
that three consecutive words are received in a short restricted interval.

The incoming serial signal will be sampled at 200 MHz, first through some registers to make
sure that the signal has stabilised at a valid logic level then into the shift register as shown in
figure 5.4. In the figure a configuration with three samples per bit is illustrated, but the latest
testing has been done with 5 cycles per bit. It is desirable to use three samples per bit to reduce
the logic resources used but this has not been prioritised and will have to be done at a later stage
in the development.

The capture condition is that start bit 1 and 2, and stop bit is resolved to their correct values.
Logic calculates the parity of the data bits and compare it with the received parity bit at all times.
When the capture condition is satisfied a data available flag is raised. The state machine will then
copy the data word to a buffer and start a countdown timer for the next word. If the timer expires
the data will be discarded and the next word received will be regarded as the first in the sequence

5.4 Receiver module 41

Gate
Majority

Gate
Majority

Gate
Majority

Gate
Majority

Gate
Majority

Serial data in

clock

Captured data

start bit 1start bit 2parity bitstop bit

Synchronizer

data bit 15

Figure 5.4: Illustration of internal architecture of the implementation of a serial decoder.

of three. If three words are received within the allowed time slot and none of them contained
parity errors, the outer state machine will raise its data available flag to be read be the collector
multiplexer tree described in the next section.

5.4.2 Multiplexer tree architecture

At maximum there will be 120 serial receivers on one FPGA. The messages must be copied from
the buffers of each receiver to a memory fast enough so that the buffers never gets overwritten.
The time to receive one message can be calculated by multiplying number of bits in a frame times
number of cycles per bit times number of frames to complete a message. For 3 cycles per bit the
calculation becomes 20 * 3 * 3 = 180 clock cycles and for 5 cycles per bit it becomes 20 * 5 * 3
= 300 clock cycles. In any case it is sufficiently fast enough to check one receiver at a time for
new data. Every receiver will then be checked every 120 clock cycle and hence it will never be
able to receive more than one message before being checked.

A straight forward solution is a large multiplexer controlled by a counter, all running at 200
MHz. However, the multiplexer has to be implemented by logic blocks in the FPGA. As the
width of a multiplexer grow, so does the depth and propagation delay. At 200 MHz the maximum
width of a multiplexer is about 30 inputs for the Virtex-4 LX FPGA. The way multiplexers are
implemented in Xilinx FPGAs are discussed in [20]. To make the structure fast the multiplexer
was split into two levels. The concept is illustrated in figure 5.5. At the bottom node, the
backbone controller may have up to eight branch controllers and each branch are connected to
16 receivers. The branch controllers will cycle through the connected receivers and check for
data available flags. If a data available flag is found, the message is copied to a buffer and the
branch controller will hold until the backbone controller has verified that it has read the message.
The backbone controller will spit out messages as they are received by toggling a write enable
flag.

42 Implementation

Branch controller Branch controller

S
er

ia
l r

ec
ei

ve
r

S
er

ia
l r

ec
ei

ve
r

Backbone controller

Figure 5.5: Concept for data collector architecture exemplified with 32 serial receivers and two
branch controllers connected to the backbone controller. The backbone controller can handle up
to eight branch controllers

Resource usage

The VHDL source code is designed to be scalable. The number of serial receivers instantiated
by the source code is controlled by setting two generic inputs (number of channels and number
of branches) at the top level entity. When the design is synthesized with all 120 channels, the
resource usage is first reported to be 130 % of available resources. The tools are able to squeeze
the design into the FPGA by violating timing constraints. Consequently, the architecture has to
be optimised before the design can be synthesized with all 120 serial receivers.

The implementation described above is not optimal concerning resource usage. The branch
controllers will be idle most of the time, waiting for the backbone controller. This idle time can
be used more efficiently if the messages were moved in a semi-serial fashion rather than in full
parallel. The 48 bit message can be split into three 16 bit words that are consecutively transfered
serially. This will take 16 clock cycles instead of one. The benefit is that only three sets of
multiplexers are needed instead of 48. This will reduce the logic usage considerably for this
module.

To reduce logic resources, the existing architecture should be modified to use the semi-serial
technique outlined. The branch controllers must be rebuilt to use only 3 sets of multiplexers
and connect to only eight serial receivers. An extra buffer level at the bottom is needed so that
the next message can be transfered while waiting for the backbone controller. The backbone

5.5 Transmitter module 43

controller must be modified so that it can serve up to 16 branch controllers instead of 8.

5.5 Transmitter module

The transmitter module consists of a 16 bit serial encoder and controller logic built around it.
The output of the serial encoder is connected to all LVDS outputs but a masking vector can be
set to disable individual channels. The module can be controlled both from the DCS interface
and the Event ID verification module.

Serial encoder

Controller

Masking vector

Serial signals to LVDS drivers

address decoder
DCS bus arbiter and

Channel registerMessage register

Grant

Request

Event ID verification
module

Message

Mask

Figure 5.6: Conceptual illustration of the transmitter module.

5.5.1 Serial encoder

This module is a state machine and a Parallel-In-Serial-Out (PISO) module. When initiated the
state machine will load data in the PISO and transmit the start bits. The output of the PISO will
then be directed to the output of the module and the PISO is shifted at the bit-rate. Finally the
parity and stop bit are added to complete the frame.

44 Implementation

5.5.2 Transmitter controller

The controller is responsible for initiating the serial encoder and setting the masking vector. Since
the module has interfaces to both the Event ID verification module and the DCS bus module,
it must negotiate with these modules to avoid conflicts and make sure that all messages are
transmitted.

Two 16 bit registers can be accessed from the DCS bus as can be seen on figure 5.6. One
contains the data or message to transmit, the other register specifies the channel that will be
unmasked. All other channels will be masked so that the message will only be transmitted to
the channel specified by this register. If the value in the channel register does not specify an
existing channel1, the message will be broadcasted to all channels. When data is written to the
message register, a pending flag register will be set. The controller will see this flag when it
is in a idle state. Data from the message register will be loaded into the serial encoder and the
masking vector will be created based on the channel number in the channel register. The pending
flag will be removed when the controller executes this procedure. The DCS board is controlled
by software under the Linux OS that runs on a 40 MHz microprocessor. For this reason it is
considered safe to assume that the transmitter module will work faster than the DCS board and a
queue has not been implemented.

The event ID verification module must wait until the transmitter module is ready to handle
the request. This handshake is done with the request and grant signals that are shown in figure
5.6. The controller will grant the request if there is no pending flag. When granted, data from
the event ID verification module is loaded into the transmitter and a masking vector is copied to
the masking registers. This lets the Event ID verification module set the masking vector directly
and thereby transmitting to any subset of all channels.

5.6 RX Memory module
This module stores messages received by the Receiver module and makes them available via
the DCS bus. For memory, four of the Block RAMs of the Virtex-4 are instantiated as 16x1024
blocks in dual port mode. Dual port RAM can be accessed from two asynchronous clock domains
independently. On the receiver side, the four Block RAMs are combined so that 64 bits are
written at once. When the Receiver module has received a message it will put the message and
the channel number on the output and toggle a write enable signal. The message is 48 bits and
the channel number is eight bits, in total 56 bits. This word, with eight zeros appended will be
written to memory at the address given by a 10 bit counter. The counter will be incremented each
time a word is written and wrap around to zero when it reaches 1023.

The DCS bus is only 16 bits wide so the DCS board must do four read operations to get one
message. The DCS bus bridge module passes on the twelve Least Significant Bits (LSBs) of the
address to the internal modules. The ten Most Significant Bits (MSBs) will be used as address
to the block RAMs and the two LSBs is used to select which of the four block RAMs to access.

1Channels are numbered from zero up to the number of channels specified minus one. For example will 0x00FF
always result in a broadcast since there will never be a channel number 255.

5.7 Trigger receiver module 45

BRAM

Virtex−4

16x1024

BRAM

Virtex−4

16x1024

BRAM

Virtex−4

16x1024

BRAM

Virtex−4

16x1024

Address generator

10 bit counter

200 MHz

40 MHz

MUX

To DCS bus interface

Data from Receiver module (56 bit)

Address

DCS address (1−0)

DCS address(11−3)

Figure 5.7: Illustration of the architecture for the RX memory module.

The DCS bus have both read and write access to this memory area. The write mode is only used
for testing and verification.

Table 5.2 shows how the bits are arranged when 4 16 bits words are read out.

Table 5.2: Format of D-RORC answer in RX register
Word 15..12 11..8 7..0

1 Header [3..0] BCID [11..0]
2 Orbit ID MSB [23..8]
3 Orbit ID LSB [7..0] D-RORC ID [7..0]
4 Chan Num [7..0] Unused

5.7 Trigger receiver module
The Trigger receiver module [13] decodes channel A and channel B signals from the TTCrx
chip on the DCS board. For each trigger sequence it will generate event information in the CDH
format and store it as nine words in an event First-In-First-Out (FIFO). Also, individual signals
will be asserted when triggers are received, like Level 0, Level 1 and Level 2 Reject/Accept

46 Implementation

triggers.
The Hardware Definition Language (HDL) source code for the Trigger receiver module is

the same that is used for the RCU firmware. A bus wrapper has been built around the module
so that it interfaces correctly with the DCS bus bridge module. The bus on the RCU board is 32
bits wide so the wrapper uses an extra address bit to select the 16 most significant or the 16 least
significant bits.

5.8 Event ID verification module
The event ID verification module is a composition of sub modules as shown in figure 5.8. To-
gether they are able to perform the event verification process described in section 4.4.

Whenever the trigger receiver module has received a trigger sequence it will be read out by
the event verification module and checked for a Level 2 Accept flag. If the trigger message
contains a Level 2 Accept flag it implies that this event should be transfered to the D-RORCs.
The event ID will then be extracted and stored in the event ID queue for verification.

module
ReceiverD−RORC

inbox
buffer

Trigger Receiver

module
Event ID comparator

EIDOK register

verification gate

Controller

Channel #

Event IDEvent ID
Event ID

Transmitter
module

Event processor

queue

CHEN vector

Figure 5.8: Overview of the event ID verification module.

The receiver module operates in the 200 MHz domain while the internal logic of the verifi-
cation module runs in the 40 MHz domain. The D-RORC inbox buffer is a FIFO that buffers
data from the receiver module and makes them available in the 40 MHz domain. When all the
channels receive data simultaneously, the receiver module will produce data at a higher rate than
the verification module can process. Hence there is a risk that the buffer will overflow such that
data will be lost. This is however not likely to happen if the request interval/timeout register in
the controller logic is set reasonably. The FIFO is able to buffer 512 words from the receiver

5.9 Busy generator 47

module. Each word contains the D-RORC message followed by the channel number which it
was received on.

The block labeled event processor in figure 5.8 will continuously compare the event ID on
the output of the event ID queue and the D-RORC inbox buffer. If the IDs match, the channel
number of the D-RORC message will be used to address a register and this register will be set
to indicate that the D-RORC on this channel has received the current event. There exists one
register for each channel and they are called the Event ID OK (EIDOK) registers. A large logic
gate will evaluate the contents of these registers and also the CHEN registers. When all channels
are either disabled in the CHEN register or checked in the EIDOK register the verification gate
will assert an event verified signal.

The controller is a state machine that monitors and controls the process. Initially the con-
troller sits in a wait state where a synchronous reset signal that resets EIDOK registers is asserted.
It will negotiate with the transmitter module to transmit requests to the D-RORCs as described
in section 5.5. When the transmit request is granted, the FSM will go to a wait state.

5.9 Busy generator
The busy generation is logical OR between two independent processes. It is enough that one
the processes indicate a busy status. One of the processes is a countdown timer that is started
every time a Level 0 trigger is detected. If there has been a collision in the detector, then the
busy-signal should be raised to block any new trigger sequences for a specific period. This has to
do with the drift time of the TPC. The countdown time can be set with a register in the Control
and status registers module.

The other process is the calculation of free FEE buffers. If the number of used buffer is
greater than or equal to the number of available buffers, the busy-signal is raised. The number of
used buffers are counted by some simple principles:

1. The count is incremented by one when the Level 1 trigger signal from the Trigger receiver
module is asserted. The FEE of the TPC will start sampling data on the Level 1 trigger. For
other sub detectors this may be different and consequently the module must be modified
for these sub detectors.

2. The count should be decremented by one when a Level 2 Reject trigger is asserted. This
implies that the FEE should abort the data taking and mark the buffer as free again.

3. The count should be decremented by one when the Event verification module asserts the
event valid signal. This implies that the event has been successfully transfered to the DAQ-
system and hence the buffers that the event occupied is now free.

The logic also handles the cases where two or more of these signals are asserted at once.
A Level 1 trigger and Level 2 Reject trigger will never happen at the same time so this is not
handled. Condition 1 and 3 will cancel each other out. If condition 2 and 3 are present at once
the buffer count must be decremented by two.

48 Implementation

5.10 Control and status registers
This module provides access to many of the control signals and registers of the Busy Box
firmware. A list with description follows.

RX memory pointer This read only register returns the address where the next received mes-
sage will be written to in the Receiver memory module.

Number of event IDs This read only register returns the number of event IDs that are stored in
queue for verification. The value does not include the event ID that is being processed.

Current event ID This is a 36 bit word that must be read out in three operations. It returns the
event ID that is currently being processed by the Event verification module.

Most recently received event ID Returns the event ID that was last received from the Trigger
receiver module.

Level 0 timeout A read/write register that specifies (in clock cycles in the 40 MHz domain) how
long the busy-signal should be asserted after receiving a Level 0 trigger.

Number of FEE buffers Read/write register that specifies how many events that can be stored
in the buffers in the FEE before they will overflow.

Halt Event verification This a single register that, when set to one, will cause the FSM in the
Event verification module to halt in fixed state. The FSM will continue if a zero is written
to the register.

Force verify Writing a one to this register creates pulse to the Event ID verification module and
forces it to move on to the next event ID in the queue even if it has not been verified that
all D-RORCs have received data for this event. The FSM in the verification module will
only see the created pulse if has been halted and is in the halt state.

Request Timeout A 12 bit read/write register that specifies how many clock cycles the Busy
Box firmware should wait before sending a new request to the D-RORCs.

CHannel ENable registers These registers are contained in the module and indicates if a chan-
nel is enabled or disabled. The eight LSBs of the address specifies the channel number.
When writing, the LSB of the data are stored in the CHEN register.

Chapter 6

Testing and verification

6.1 Simulation

The HDL source code describes the behaviour of an idealized digital electronic device. The code
includes both algorithmic and structural descriptions. A HDL design may consist of many sub-
modules which in turn includes other submodules and so on. The complexity makes it necessary
to take advantage of computer assisted verification tools so that the description of the system can
be verified before progressing the next stage of implementation.

A simulator is a software tool that can simulate how a described system will behave in the
time domain. The simulator needs to keep track of all signals and their interactions in time.
The values of signals are changed by processes defined in the HDL code. Each process defines
its output signals as a function of the input signals and each such process has a sensitivity list.
The sensitivity list is a list of signals that the process is sensitive to. The simulator uses discrete
values to represent time and preserve the rules of causality. When a signal in the sensitivity list
of a process is updated the process is evaluated by the simulator and may result in a change in the
process’ output signals. Since the change in the output signals is an effect caused by the change
in the input signals the update of the output signals must happen some time after the cause. The
simulator emulates this by scheduling signal updates to happen at some time value in the future.
The time delay from cause to effect can be defined by the HDL code of the process. Otherwise
the signal update will be scheduled for the next delta delay which is an artificial time unit that
only serves the purpose of emulating causality. In effect the simulator will never progress in real
time units, only iterations when delta delays are used.

An iteration is all the operations the simulator does at one time cycle before moving on to the
time where the next signal update is scheduled. To summarize; an iteration includes updating the
signal changes that are scheduled for this time cycle and evaluating all processes that have one
or more of these signals in their sensitivity list and finally schedule the updates of the changed
signals. The simulator usually parses the code, analyze all processes and pre-compile binary
program code to speed up simulation times.

A simulator is an indispensable tool when writing HDL source code. It lets the designer see
all the internal signal values of a design at all times. This crucial to find and trace back bugs and

50 Testing and verification

D−RORC sim model

DCS bus master interface

simulation model Design under test

Busy Box firmware

TTCrx emulator

Test bench

Test sequence controller

Figure 6.1: Schematic overview of the testbench for the Busy Box firmware.

errors that that appears at the outputs of the design.

6.1.1 Simulating the Busy Box firmware
To be able to simulate a design it is necessary to create a simulation environment around the
design that interacts with it in the same way that is expected in the real system setup. For the
case of the Busy Box, the design will be realized in a FPGA that is connected to other devices
such as the DCS board and D-RORC. These other devices needs to be emulated by accurate
simulation models so that the performance of the design under test can be evaluated. Simulation
models and the simulation environment is written in VHDL as well, but the code doesn’t need
to be synthesizable. Such a simulation environment is called a testbench. The testbench will
generate all stimuli and may also automatically verify that the design responds as expected.

Figure 6.1.1 shows a conceptual illustration of a testbench for the VHDL source code for
the Busy Box firmware. The test sequence controller is a set of sequential statements that uses
emulation modules or subprograms to manipulate the Busy Box design. The DCS bus master
emulation is simply two VHDL procedures that, when called, performs bus transactions accord-
ing to given parameters and specifications. For example a write transaction can be performed by
calling a DCS write procedure with data and address given as parameters.

At the time of this writing the TTCrx emulation has not yet been developed. It can be im-
plemented as subprograms or as an entity that are controlled with signals from the main test
sequence controller. It must be able to emulate the serial signals for channel A and channel B
and provide an easy way to generate trigger sequences.

The D-RORC emulators are entities with the same serial receiver and transmitter that is im-

6.2 Serial LVDS communication tests 51

plemented in the D-RORC. The D-RORC can be programmed to reply in the same as the D-
RORC will but it will receive event IDs from the test sequence controller.

With these tools available it is easy to write a test sequence that emulates different scenarios
that are to be simulated. For example trigger sequences can be sent to the Busy Box through
the TTCrx emulator. Later on in the simulation the event IDs that were sent with the trigger
sequences can be given to the D-RORC emulators. The Busy Box firmware design will try to
verify the event IDs by communicating with the D-RORC emulators. The entire process can be
inspected by looking the output of the simulator, usually in a wave-viewer software.

This testbench does not do any error checking and will not detect or alert about any errors au-
tomatically. The purpose is only to create an simulation environment to be used by the developer
to be able to inspect the resulting behaviour of the source code.

6.2 Serial LVDS communication tests

The serial communication with the D-RORCs is the foundation of the system and a prerequisite
for further testing of dependent features. Consequently, it has been a high priority to develop and
verify a reliable communication link. Testing the serial communication in hardware is necessary
to get an impression of how well the communication channels performs.

6.2.1 Loopback cable test

The first tests involved just the Busy Box. In the early stages of development the serial protocol
was based on the work presented in [21]. It consisted of frames with 2 start bits, 32 bits of
payload, one parity bit and finally a stop bit. In total a 36 bit frame. The firmware included
both transmitter and receiver and the communication logic ran on 200 MHz. One bit period was
4 clock cycles resulting in a 50 MHz bit rate. The goal of the test was to be able to transmit a
message through a loopback-cable. In other words, to drive a serial signal into a cable and decode
the signal at the other end of the cable with the same device. With this test setup the transmitter
and receiver run on the same clock which means that there is no accumulation of phase error.
This will not be the case when communicating with the D-RORCs.

The firmware included a DCS interface with access to memories and registers in the FPGA
that provided an interface to access the serial communications via DCS board. The RCU shell is
a flexible software program on the DCS board that provides a command line interface to perform
read and write operations on the system bus to the Busy Box FPGAs.

The first thing these tests revealed was that unconnected ports produced a lot of garbage
data. This was discussed in section 4.2. When registers to disable/enable individual channels
were implemented this test setup was fairly successful. It was planned to develop a software
that transfered large data chunks over the link get some statistics about the transmission loss.
However this was never achieved before the system was brought to CERN for testing with the
D-RORC.

52 Testing and verification

Figure 6.2: Measurement on the transmission lines of the LVDS-based communication between
a D-RORC and a Busy Box. Ground is referenced to the groundplane in the PCB of the receiving
device, in this case the Busy Box.

6.2.2 First integration tests at CERN

The system was brought to CERN to test the communication with the D-RORCs. After some
debugging and the implementation of the improved serial receiver discussed in section 4.2 a
successful ”proof of concept” test was achieved during this stay. This included a system setup
with a LTU in emulation mode, a DDL Data Generator (DDG), D-RORC and the Busy Box.
The DDG is device developed by the DAQ team at CERN to emulate the FEE. It is capable of
receiving triggers and generate event data and a CDH in the proper format.

The ”proof of concept” test included issuing a trigger sequence which was received by the
DDG and the Busy Box. The DDG generated event data and a CDH and transmitted this to the
D-RORC. A small program was able request the Event ID from the D-RORC and match it with
the one which was received by the Busy Box. Figure 6.2 shows the serial differential signal as
seen on the oscilloscope.

During the stay at CERN the system was discussed with the developer of the D-RORC
firmware. It was agreed that the messages from the D-RORCs should be 48 bits so that an
event ID of 36 bit could be transmitted in a single message. The messages from the Busy Box to

6.3 More integration tests at CERN 53

the D-RORC should be only 16 bit since hardly any data will flow in this direction.

6.2.3 Test of communications with another device as D-RORC replace-
ment

After the stay at CERN the discussed changes were implemented along with other new features
such as the event transfer verification module. The new communication modules are the ones that
are currently being used in the design. To be able to test the new communication in hardware
before the next tests at CERN another device capable of implementing the modules that were
intended for the D-RORC was used. This device was the TriggerOR board which has the same
Virtex-4 FPGA as the Busy Box system. The TriggerOR board also uses an DCS board and is
very similar to the Busy Box system. This made it easy to develop a firmware design with a
serial transmitter and receiver and a bus interface to the DCS board. The serial communication
could then be controlled and verified with the RCU shell on both boards.

After some debugging and tweaking the new communication modules was sent to CERN so
that they could be implemented in the D-RORC firmware prior to the next integration tests.

6.3 More integration tests at CERN
During this stay a test setup identical to the previous but two sets of DDGs and D-RORCs was
used. With the new communication modules and new firmware features the Busy Box was able
to verify the event transfer from the DDGs to the D-RORCs at rates up to 1800 Hz. This rate
is much higher than the maximum expected readout rate for the TPC detector system which is
about 200 Hz.

6.3.1 Integration test with a complete TPC sector
Personnel at CERN have tested the Busy Box in a test setup that is very realistic. A complete
TPC sector with all the FEE was set up in a laboratory. The setup is illustrated in figure 6.3. A
problem with these tests are that the firmware for the RCU boards is an old version that was not
designed for the new trigger sequences. As a result the Level 0 trigger had to be disabled. Also
some of the RCUs did not produce a correct CDH and had to be excluded from the test setup.

With three of the RCUs and corresponding D-RORCs disabled this test setup achieved short
runs with 400 Hz readout rate before the Busy Box asserts the busy signal because an event
can not be verified. The problem is being investigated but there has not been discovered any
misbehaviour in the Busy Box.

54 Testing and verification

D−RORC

D−RORC

D−RORC

D−RORC

D−RORC

D−RORC

Trigger Busy Box

0

1

2

3

5

4

LTU

P
C

I b
u
s
 o

f h
o

s
t c

o
m

p
u
te

r

CTP emulator

Event Data

Busy

Triggers

Event IDs

DAQ Computer

FEE units for one TPC−sector

Figure 6.3: Schematic illustration of the test setup at the RCU lab at CERN.

Chapter 7

Discussion and conclusion

7.1 Firmware completion
There is still some work to be done with the firmware development. First of all the architecture
must be optimized to use less logic resources so that all 120 serial receivers can be implemented
in the first FPGA. There are several possible strategies that can be applied to achieve this goal.
One is to modify the architecture of the multiplexer structure as described in section 5.4.2. If this
is not sufficient the choice or implementation of serial receiver must be evaluated. The current
implementation uses a lot of resources. An interesting strategy to reduce the resource usage is
to review the asynchronous resets. All synchronous processes in the VHDL source code uses a
standard template with asynchronous resets of all registers. Since all the registers in the FPGAs
will in a known state when it is programmed the asynchronous reset is not really necessary. By
removing the asynchronous reset and reviewing the code of the serial receiver the resource usage
can be reduced considerably. An article [22] published on the Xilinx website claims that designs
can become 50% smaller by getting the priorities of the registers right.

The firmware must be built in two versions, one for FPGA1 and one for FPGA2, where the
busy signal from FPGA2 is routed to FPGA1 which will coordinate the busy generation.

Furthermore, the request ID feature must be implemented both in the Busy Box and the D-
RORC. Currently the system will hang in a busy state even with single transmission error over
the LVDS link.

Finally the registers available to the software running on the DCS board must be evaluated.
The software designer is working on the requirement specifications.

7.2 Identifying and exploring sources for error conditions
There are many sources of errors and all possible scenarios must be identified and explored.
Some sources of errors that have not yet been covered:

Invalid trigger sequences If there is an error in the trigger system or transmission error of the
triggers this will most likely lead to an event that can not be verified by the Busy Box.

56 Discussion and conclusion

How these scenarios will develop is at this time somewhat uncertain and depends among
other things on how the firmware of the RCUs will react. At present time a new version of
the RCU firmware is under development and so the final behaviour of this firmware is not
yet available.

Missing event ID in the D-RORCs This can be caused by errors in the RCU or D-RORC or a
transmission error of the event data. This will cause the Busy Box to hang in the busy state
because the event transfer can not be verified. A possible solution is to report the Event ID
to DCS system and try to skip the event.

Event ID mismatch If the event ID from one or more D-RORCs keeps resulting in a mismatch
with the event ID form the trigger system (the Busy Box should keep requesting event IDs
if the don’t match) this is most likely not a transmission error between the D-RORC and
Busy Box. The software can check if the event IDs received from these D-RORCs have
been issued by the trigger system at all and try to resolve the situation by skipping some
events and reporting it to the DCS.

Non-responding D-RORC This could be a malfunction in the D-RORC itself or the communi-
cation link. The error condition must be reported to the DCS so that it can be investigated
by personnel and cannot be resolved by the Busy Box.

There are probably many more error scenarios but only thorough analysis of the complete
system and testing can determine the probability that such scenarios will occur. It may not be
worth the effort to implement error handling features that only solves rare problems.

7.3 Software for the DCS board
There is a lot of work to be done with the software that will run on the DCS board before the
Busy Box system can be fully integrated with the rest of the data acquisition system.

One of the first things that the software must take care of is to program the FPGAs upon
start up of the system. Then the software must set the correct parameters in the configuration
registers, check that the system is ready to go and report to the DCS system when the Busy Box
is operational.

The Busy Box must also be fully integrated in the DCS system. A software framework for
this has already been developed for the RCU board. This software must be adapted to the Busy
Box hardware and functionality. This includes adapting the low level functions that access the
hardware registers. All DCS boards will run a FEE server which clients can connect to through
the network interface and gain access to various services. The Busy Box will most likely require
some special services for the FEE server that must be developed.

Another task for the software is the high level error handling. This will in the first stage
include monitoring the operation of the firmware and detect possible error conditions, especially
if the event transfer verification has stopped. Procedures to quickly identify the source of the
problem must be developed. How the different error conditions should be handled must be
discussed with parties of the other systems.

7.4 Testing and integration of the finalized system 57

7.4 Testing and integration of the finalized system
So far the Busy Box has not been tested with more than six channels. When the firmware is ready
to operate on 216 channels this must be tested with the TPC detector. Any problems and issues
that is revealed during these tests must be fixed before the system is ready to be integrated.

7.5 Conclusion
The development of the firmware for the Busy Box is not yet completed. With the results from
the tests at CERN and the improvements outlined in this thesis, I am confident that the Busy Box
will meet requirements with a little more work.

From the test results we have verified that the communication is robust but we need to be
able to recover quickly if message is lost or corrupted. This will be achieved by implementing
the request ID feature in the Busy Box and the D-RORCs. The tests have also convinced us that
the operation of the Busy Box is fast enough. The biggest delay in the procedure is the polling
for event IDs from the D-RORCs. Since this is mostly parallel operations the timing should not
be affected when adding more channels to the system.

The tasks of the Busy Box will be implemented with simple and robust solutions that ensures
stable and reliable operation. The work to finish and include the features discussed in this thesis
will continue.

58 Discussion and conclusion

Appendix A

Firmware for readout electronics of a
muon detector

This appendix describes the Cosmic Ray Telescope (CRT) and the implementation of the firmware
for the digital part of the readout electronics. This was the first project I was involved in and
my first introduction to firmware development. The information about cosmic radiation has been
obtained from Wikipedia. Information about the detector has been obtained from conversations
with Lars G. Johansen.

A.1 Introduction
The Cosmic Ray Telescope (CRT) is a scintillator based muon detector built at the University
of Bergen (UiB). It is designed to detect muons that originate from high energy particles from
the cosmic radiation of the Universe. The detector includes 16 channels where the scintillator of
each channel are placed strategically to be able to obtain spatial information about the detected
muons. Muon hits will be registered in time and space and transfered to a desktop computer for
analysis and storage.

The detector is built to be used in exercises for undergraduate students. Such exercises give
students an excellent opportunity to gain first hand experience of experimental particle physics.

A.2 Cosmic rays
Cosmic rays are particles from space that hit the Earth’s atmosphere. They are actually not rays
but rather single particles that travel in space at high speeds. The sources of these particles can
be many different physical processes from anywhere in the universe. Examples of sources for
cosmic rays are the sun in our own solar system, super novas, rotating neutron stars or black
holes. However the sources and origins of the most energetic particles still remains unknown.

The magnetic field of the local galaxy will bend the orbits of the particles and cause them to
move in a circular or spiral paths. Thus the cosmic rays do not provide much information about
the direction to the source from which they originate.

60 Firmware for readout electronics of a muon detector

A.2.1 Air showers and muons
When cosmic rays enter the Earth’s atmosphere, the high energy particles will collide and interact
with the gas molecules in the atmosphere. In the collision the original nucleus will disintegrate
and new particles will be generated. The new particles will collide with other gas molecules and
the process repeats itself, creating a cascade of particles, and the result is called an air shower.
The number of new particles created depends on the energy of the original particle. A high
energy cosmic ray striking the Earth’s atmosphere may result in billions of particles in an air
shower. The reactions that occur in the collisions will produce many kaons and pions. These
unstable mesons will quickly decay into muons or neutrinos. The muons do not interact strongly
with matter and hence they will continue in their path down towards the Earth’s surface. In fact,
the muons are also unstable particles with a mean lifetime of about 2.2 µs before they decay
into several lower energy particles. By the theory of classic mechanics they would not reach
the surface before decaying. But the high speeds at which they travel makes them subject to the
relativistic effect of time dilation. The muons will experience time slower than observers on the
Earth. This allows the muons to reach the surface and even penetrate several hundred meters into
the ground.

A.2.2 Muon detection
Muons are ionizing radiation that can be detected with scintillating materials. When the muons
pass through a scintillating material, they will generate a short flash of light by an effect called
Compton scattering. The Compton scattering process will convert the some of the energy of
the incoming ionizing radiation into photons with a material dependent wavelength, typically
in the UV-region. Thus the number of photons produced, or the intensity of the flash, will be
proportional to the energy of the initial particle. The flash can be converted to an electrical pulse
by using some sort of photo sensitive transducer, for example a PhotoMultiplier Tube (PMT).

A.3 The Cosmic Ray Telescope detector system
The illustration in figure A.1 gives an overview of how the detector is composed. 16 sets of
scintillators, PMTs and signal shapers provide 16 channels. The signal shapers convert the sig-
nals from the PMTs into signals with square pulses of fixed length. A Complex Programmable
Logic Device (CPLD) will sample the outputs of the signal shapers and add a time stamp to
the samples. The data are then sent to a converter that transmits it through a standard Universal
Serial Bus (USB)-cable to a desktop computer. The computer will be used for data analysis and
storage.

A.3.1 Scintillator
The utilized scintillators are made of organic plastic material that are doped in several levels
so that light of short wavelengths will be shifted in several steps to a violet light in the visible

A.3 The Cosmic Ray Telescope detector system 61

x16

Scintillator Signal shaper

PMT
Circuit Board

RS232 − USB

converter
CPLD

Figure A.1: Overview of the main components of the muon detector.

spectra. In effect, the scintillators converts high energy photons or radiation to photons of lower
energy. This type of scintillator have been chosen because the violet light they emit is in the
range where the PMTs are most sensitive.

The detector is built with 16 separate scintillators placed as shown in figure A.2. Each scin-
tillator is 100 cm long, 25 cm wide and 2 cm thick. The idea is to create two horizontal planes
with a 4 x 4 grid placed vertically above each other. This makes it possible to obtain spatial
information about the passing muons. A muon that strikes through one of the planes will most
likely be detected in two channels in that plane which will indicate a square in the grid.

The scintillators are individually wrapped in reflective mylar and coated in black materials
to keep light from entering. Any light or radiation that is not caused by muons is considered
as noise and must be prevented from affecting the scintillators. Cones made of nonscintillating
plexiglass leads the light from the scintillators into the PMTs.

A.3.2 PhotoMultiplier Tube
A PMT is a vacuum tube usually made of glass. Inside the tube is a photocathode, an electron
multiplier consisting of several dynodes, and at the end an anode. A high voltage source produces
an electric field from the photocathode to the anode at the other end of the tube. The dynodes are
charged with intermediate voltages to create a potential between each dynode.

Incoming photons will hit the photocathode, and by the photoelectric effect electrons are
released from the cathode. The electric field will accelerate the freed electrons towards the
first dynode of the electron multiplier. When the accelerated electrons hit the dynode, a greater
number of electrons will be realised and accelerated towards the next dynode. The process is
repeated for each dynode in the tube and the result is a great increase in the number of electrons.
At the end of the tube the produced electrons will deposit a negative charge on the anode. This
charge can be read out as a negative current pulse.

The PMT utilized in the CRT are a Russian produced model named FEU-84. The electron

62 Firmware for readout electronics of a muon detector

PMT

Scintillator

Figure A.2: Illustration of the muon detector setup.

A.3 The Cosmic Ray Telescope detector system 63

multiplier contains ten dynodes. An external high voltage power source supplies the voltages
applied to the electrodes. The power supply generates a differential voltage potential from 0
down to -2 kV from a +5 V input supply voltage. A circuit of resistors and capacitor generates
the intermediate voltages for the dynodes. A dedicated output with a voltage signal ranging from
0 to 2.048 V can be used to monitor the voltage applied across the photocathode and to anode.
The negative pulse at the anode will range from a few tenths of mV to several V depending on
the amplification of the tube.

A.3.3 Asynchronous trigger circuits

Analog electronics detects the negative pulses from the PMTs and creates a digital pulse of fixed
length. The output signal from the PMT is amplified and shaped in four stages before triggering
a monostable latch. The output of the latch will be driven to either +5 V or 0 V which are
valid logic high and low values, respectively. If the latch is triggered it will produce a logic
high voltage on its output for about 200 ns before returning to logic zero voltage. The length
of the pulse is determined by the discharge-time of a RC-circuit. Thus all information about the
intensity of the flash has been stripped away and consequently the individual channel will only
provide information about whether a muon has passed through the scintillator or not.

A.3.4 Digital readout electronics

A CPLD will sample the asynchronous output pulses from the trigger circuits at a rate of 10
MHz. Hence the sample period is 100 ns and a pulse from the monostable latch will normally
be sampled twice at a logic high value. However, the muons will hit randomly in time and jitter
noise will be introduced by the electronics. This implies that the length of the pulse may deviate
slightly from the nominal 200 ns and the pulses will arrive randomly in time and phase. This
may cause a pulse to appear as one or three high samples as well as the nominal two.

Whenever there is a hit in one or more of the channels the readout electronics will capture
the values of all channels and transmit them together with a timestamp to the computer. The
communication link with the computer is provided by USB standard interface. The CPLD will
interface with an on-board USB converter with standard RS-232 protocol. The converter is
connected to the computer with a USB cable and is able to translate and forward data in both
directions.

Complex Programmable Logic Device

The digital electronics is provided by an MAX II CPLD produced by Actel. The specific de-
vice is EPM1270T144C with speed grade -5. It resides in a Thin Quad Flat Pack (TQFP) with
144 pins where 212 are user programmable I/O pins. The programmable logic configuration is
based on Static Random Access Memory (SRAM) and thus it is volatile, but the device has an
integrated non-volatile FLASH memory to contain the users configuration data. The CPLD will
program itself from the internal FLASH memory as part of the power-up cycle and hence it is

64 Firmware for readout electronics of a muon detector

not necessary to reprogram the device manually after a power cycle. The configuration data is
loaded into the CPLD with the JTAG interface. [23]

A.3.5 Data analysis and presentation

The data stream from the detector is received by a standard desktop computer. The USB interface
of the computer stores the received data in a small buffer that has to be read out frequently by
software on the computer to prevent overflow in the buffer.

LABVIEW is a software package by National Instruments that provides an easy program-
ming interface to build data acquisition applications on a standard computer. The package pro-
vides modules that gives the user easy access to many of the computers communication ports.
For the CRT application, LABVIEW even provides a module that interfaces with RS232-to-USB
converter, completely hiding away the USB and other underlaying protocols and hardware. This
was another good reason for utilizing the converter in the readout electronics.

A prototype DAQ application has been designed and tested with LABVIEW. The application
is able to receive data from the detector and also send a control byte to the digital readout elec-
tronics. The received data can be written to ASCII text files so that data can be exported to other
workstations for analysis. The firmware, including the control byte, is presented and discussed
in the next section.

In future exercises, students will be able to easily design and program their own data acqui-
sition and analysis applications with LABVIEW. For more advanced analysis the ROOT frame-
work will be used. ROOT is C++ based framework developed at CERN specifically designed for
particle physics analysis [24].

A.4 Firmware implementation

A.4.1 Overview

The CPLD will receive 16 channels where pulses of 200 ns in length, will arrive at random in
time and phase. A logic high indicates a hit in the scintillator for the corresponding channel. The
inputs are sampled synchronously at 10 MHz which is also the system clock frequency. If there
is a hit in one channel then the samples for all channels, a 16 bit word, will be captured. For each
16 bit word that is captured a 30 bit time stamp should be appended. The time stamp is generated
by a counter driven by the system clock.

All the captured data will be transferred to a computer. USB has become widely supported
by desktop computers and provides faster data transfer rates than the traditional serial port. For
this reason and because there was a RS232-to-USB converter available, the USB interface was
chosen as data transfer media. The converter makes it easy to implement a USB interface as the
RS232-protocol is simple and straightforward.

The firmware implements a RS-232 UART for communication with the computer via the
converter. The transmitter will be used to push data whenever there are words in the FIFO. The

A.4 Firmware implementation 65

receiver is used to receive control bytes from the computer. By toggling some bits in the control
byte several commands can be sent to the firmware.

Bit 1 CLK RST Setting this bit high will reset the counter that generates the timestamp.
Bit 2 ACQ START Setting this bit high enables the data acquisition.
Bit 3 ACQ STOP Setting this bit high disables the data acquisition.
Bit 4 FIFO OUT CLEAR Setting this bit high will reset/clear the FIFO/buffer.
Bit 5 CAL TRIG Setting this bit high will generate a calibration trigger.

Bits that are zero do not do anything. If both ACQ START and ACQ STOP bits are high
in the same control byte the data acquisition will be disabled. The CAL TRIG command will
trigger a readout even if the data acquisition is disabled.

A.4.2 Implementation
In figure A.3 the 16 channels enter the firmware as the signal named data in. In the input ctrl
module the signal is run through two synchronizer registers so that all values have valid logic val-
ues before they are evaluated by any logic. The synchronized data is routed to the 16 lowest bits
of the FIFO. A 16 bits OR gate will generate a trigger if there is a hit in one of the channels, the
fifo full is low and the enable signal from the myon ctrl module is high. The trig
will cause the write request of the FIFO to be asserted as can be seen in the figure.

The l fifo full is a latched version of fifo full. When the fifo full is asserted
the signal is latched until a new word has been written to the FIFO. When the new word is written
the MSB will contain a one to indicate the FIFO full warning. This is to let the user who receives
the data know that the FIFO has been full and that one or more words most likely have been lost.

The counter increments each clock cycle and will count up to 230 ≈ 1.07 billion before
starting over again. At 10 MHz clock this equals to about 107 seconds. The 30 bit word
time stamp will be written to the FIFO whenever smpl data is written. The counter can be
reset by sending a control byte with the CLK RST bit high to the myon ctrl module.

The myon ctrl receives the control byte and generates control signals accordingly as can
be seen in figure A.3. The control byte is received from the rx uart module. This module is a
serial receiver that decodes the frame received from the RS232-to-USB converter. The serial data
signal from the converter enters the firmware as the signal named rxsd in the figure. When a
byte has been successfully received the rx data av signal is asserted and the data is available
on the rx data output.

The tx uart module is a serial transmitter that generates a serial signal txsd that is output
to the RS232-to-USB converter. The module will load the 8 bit signal named tx data in the
figure and start the transmission of the byte when tx load is asserted. While transmitting the
module is busy and will not load new data. To indicate this state the module raises tx busy.

The word from the FIFO is 48 bits in length and so it has to be transmitted as six bytes by
the tx uart module. The myon roc is a readout controller that pops a word from the FIFO
and feeds slices of 8 bits of the 48 bits at a time to the serial transmitter. The module is a state
machine that controls a MUX to select the different slices. The FIFO will assert fifo empty

66 Firmware for readout electronics of a muon detector

when there are no words to pop. If it is not empty the read req signal can be asserted and a
new word will be available on the output of the FIFO the next clock cycle.

A.5 Testing

A.5.1 Simulation - Formal verification
ModelSim is a software tool that can simulate a VHDL design. The simulator will move forward
in time and simulate all signals and interactions. All of the VHDL source code has been sim-
ulated with ModelSim. Both individual testing of modules and the entire design. A module or
entity has inputs and outputs. The testing procedure involves setting the input signals and moni-
toring the outputs, or in other words, creating stimuli and verify the response. This procedure is
usually automated by a testbench, that can be written in VHDL or other programming languages
supported by the simulator.

Testbenches for all modules have been written in VHDL that automatically generate stimuli
and verifies the response. A testbench for the UART modules connects the serial out of the
transmitter to the serial in of the receiver and verifies that a byte is correctly transferred.

Testing the complete design is more complex. Many features can only be tested indirectly but
still the same principles apply. An input generator creates pulses of fixed length and period. The
generator will create a pulse for one channel at a time and increase the channel number for each
pulse so that a pattern is created. The testbench will also send some control bytes with a trans-
mitter UART module so that the corresponding response can be observed. The serial output from
the design is decoded by receiver UART and written to log file called sim myon out.txt.

The following is an excerpt from the log file created by the testbench.

1 00000000_00000000_00000000_00000000_10011101_11111110_10101111_
2 00000000_00000100_00000000_00000001_00011001_01000100_10101111_
3 00000000_00000100_00000000_00000001_00011001_01001000_10101111_
4 00000000_00001000_00000000_00000001_10100101_11100100_10101111_
5 00000000_00001000_00000000_00000001_10100101_11101000_10101111_
6 00000000_00010000_00000000_00000010_00110010_10000100_10101111_
7 00000000_00010000_00000000_00000010_00110010_10001000_10101111_

The first two columns are the bits indicating hits in the channels. The next 30 bits are the
timestamp and the two last bits in column 6 is the two status-bits, calibration trigger and fifo full
warning. The seventh column is a separator or end-of-word byte that is sent at the end of each
transmitted word from the FIFO. If the lines above are compared with the input of the FIFO in
figure A.3 one can see that each line is word in the FIFO but listed from LSB to MSB.

At line 1 of the excerpt the data indicates no hits in any of the channels, however bit 7 in
the sixth column is one which indicates a calibration trigger was present when the data was
captured. This is consistent with the expected result since the testbench sends a control byte with
the CAL TRIG bit high.

Line 2 and 3 indicates a hit in one of the channels and hence the data has been captured and
transmitted correctly. One can see the timestamp has increased and that it increases with only

A.6 Conclusion 67

one from line 2 to line 3. This is consistent with the fact that a pulse of 200 ns in length will be
detected in two consecutive clock cycles.

Further, in line 4 and 5, and lines 6 and 7 one can see similar hits in other channels where the
timestamp has increased. Looking at a larger excerpt from the log file one can clearly recognize
the pattern in the channel numbers that have hits and that it is consistent with the input generated
by the input generator.

The testbench for the muon firmware design is not fully automatic in the sense that output
has to be inspected manually to discover any errors and deviations from the expected result. This
is only a formal verification of the source code for the design.

A.5.2 Synthesis and post-synthesis simulation
The firmware was synthesized with the Precision software from Mentor Graphics. Precision
produces VHDL code which describes the netlist of the synthesized design and a file with timing
information. These design files has been simulated with the origianl testbench in ModelSim with
timing information. The result is compared with the result from the simulation of the VHDL
source code. This verifies that the design has been synthesized correctly and that the timing
constraints are met.

A.5.3 Testing in real system
The firmware design has been tested in hardware. It has been verified that one is able to command
the firmware properly and that signals will be captured and transferred to the computer.

The complete readout chain with scintillators and PMTs have been tested with three channels.
There are still some problems with the hardware of the rest of the channels.

During testing of the communication link with the computer the baudrate/bitrate fo the RS-
232 interface was experimented with. The baudrate was finally set to 115 k which should be
plentyfull as the expected trigger rate is a few Hertz.

A.6 Conclusion
With this work I have managed to successfully develop and integrate a firmware design. All
modules written by me in VHDL except for the tx uart and rx uart modules by Ketil Røed
and the FIFO which was generated by the Quartus Megafunction wizard.

68 Firmware for readout electronics of a muon detector

t
x
_
u
a
r
t

r
x
s
d

1
6

1
6

m
y
o
n
_
c
t
r
l

r
x
_
d
a
t
a
_
a
v

r
x
_
d
a
t
a

r
x
_
u
a
r
t

c
l
k
_
r
s
t

e
n
a
b
l
e

t
r
i
g
_
c
a
l

d
a
t
a
_
i
n

c
o
u
n
t
e
r

smpl_data

8

r
e
a
d
_
r
e
q

4
8

m
y
o
n
_
r
o
c

t
x
_
d
a
t
a

8

t
x
_
l
o
a
d

t
x
_
b
u
s
y

l
_
f
i
f
o
_
f
u
l
l

f
i
f
o
_
e
m
p
t
y

1
5

0 1
6

4
5

4
6

4
7

0

4
7

m
f
_
f
i
f
o

i
n
p
u
t
_
c
t
r
l

t
i
m
e
_
s
t
a
m
p

f
i
f
o
_
f
u
l
l

f
i
f
o
_
o
u
t

3
0

t
r
i
g

t
x
s
d

w
r
_
r
e
q

fifo_clr

Figure A.3: Overview of architecture of the muon firmware.

Appendix B

FPGAworld 2007 article

The article in this appendix was published in the proceedings of the FPGAworld conference.
ISSN 1404-3041 ISRN MDH-MRTC-215/2007-1-SE

The conference was held in Lund and Stockholm in Sweden, on the 11th and 13th of Septem-
ber, respectively. I was present on the conference in Stockholm to give a presentation based on
the article.

Busy Generation in a large Trigger Based Data Acquisition
System

M. Munkejord∗ A. Stangeland∗ J. Alme∗ W. Rauch† M. Richter∗

A. Rossebø∗ D. Röhrich∗ C. Soos‡ K. Ullaland∗

Abstract

This paper gives an overview of a specific trigger and data acquisition system used in
experimental nuclear physics, and describes one of its many components, which generates the
busy signal. It is a FPGA based device that continuously keeps track of the number of issued
triggers and computes the number of free buffers in the Front End Electronics.

I INTRODUCTION

The Large Hadron Collider at CERN accelerates
two separate, circular beams of nuclei. The two
beams move in opposite directions and at four
points they intersect, allowing for collisions. AL-
ICE (A Large Ion Collider Experiment) [1] is
placed at one of these points and comprises sev-
eral detectors. Recording and transfer of event
data will be controlled through trigger signals,
which are based on inputs from fast detectors.
The Time Projection Chamber (TPC) [2] is one of
the main tracking detectors in ALICE. It has ap-
proximately 560000 channels and generates data
at a rate of up to 25 GB/s. For Lead-Lead colli-
sions the maximum interaction rate will be about
8 kHz. In proton-proton collisions it will be
higher, about 200 kHz in ALICE. Not all inter-
actions will be recorded and kept for later anal-
ysis, and it is the trigger system that controls
which. On average the collision rates will there-
fore be somewhat higher than the transfer rate to
the Data Acquisition System (DAQ). For this rea-

∗Department of Physics and Technology, University of
Bergen, Norway

†University of Applied Sciences, Frankfurt, Germany
‡CERN, European Organization for Nuclear Research,

Geneva, Switzerland

Figure 1: Illustration of ALICE

son the detector Front End Electronics (FEE) [3]
has some buffer memory. To prevent overflow in
the FEE buffers, a mechanism to halt the issuing
of new triggers is required. This is what is re-
ferred to as busy generation and will be provided
by a dedicated device called the Busy Box. The
Busy Box will be used in several of the detectors
of ALICE and it is the subject of this paper.

II THE TRIGGER SYSTEM

ALICE has one Central Trigger Processor (CTP)
[7]. It receives information from all sub detectors
and makes decisions on what triggers to issue. All

1

triggers are forwarded to the Local Trigger Units
which distribute them to the FEE over an optical
fiber channel. The global system clock will be
distributed over the same fiber. This clock signal
drives all of the digital electronics in the detec-
tor and runs at the nominal bunch crossing rate of
40.08 MHz. The clock is also used as reference
when creating Event IDs for collisions. Event IDs
will be distributed with the triggers and makes it
possible to compare data from different sub detec-
tors when analyzing events. Event IDs also play
an important role in the busy handling, as will be
explained later.

The hardware trigger system for ALICE has
three levels - Level 0, Level 1 and Level 2, and
they are issued in sequence. A trigger sequence
is started by a Level 0 trigger, which will be is-
sued once a collision has been detected. Some
time after that a Level 1 trigger will be issued if
the collision satisfies certain conditions. If not the
Level 1 trigger is suppressed, the trigger sequence
is aborted and any data recorded so far discarded.
Provided a Level 1 trigger was issued, a Level 2
trigger will be issued. The Level 2 trigger will in-
dicate whether the event was accepted or not. If
the event was accepted the FEE will mark the data
in its buffers for transmission to the DAQ sys-
tem. The DAQ system will receive the event data
whenever there is capacity available. If a Level 2
Reject trigger is issued then FEE will overwrite
its buffer when new triggers are received.

The TPC is constructed like a barrel filled with
gas (see figure 1). When particles from a collision
travels through the TPC, they will ionize the gas
in their path leaving a trail of ionized atoms. Elec-
tric fields will cause the freed electrons to drift to-
wards the ends of the barrel where they can be de-
tected. To fully record an event the TPC requires
about 90 µs. This makes the TPC a slow detector
and new collisions can occur while there still are
drifting electrons from a previous collision. How-
ever, during analysis one is able to distinguish up
to a certain number of events, the number depend-
ing amongst other things on the quality of the re-
construction algorithms. If too many collisions
occur after a trigger has been issued, the CTP will
issue a Level 2 Reject trigger and the data will

be discarded as explained earlier. This feature is
called the past-future protection and is meant to
discard data from events that can not be analyzed.

III BUSY HANDLING

The task of the Busy Box is to let the trigger sys-
tem know when the detector is busy and can not
handle new trigger sequences. As long as the busy
signal is asserted, the CTP will not issue addi-
tional trigger sequences. The generation of the
busy signal is a logical OR between two separate
processes inside the Busy Box. One is a simple
timer started whenever a Level 0 trigger is re-
ceived. In the case of the TPC the timer is set
to approximately 90µs, which is the time it takes
to record one event. The other process will flag
busy when all buffers on the FEE are occupied.

If a Level 2 Accept is issued for an event,
the FEE will tag the data with the Event ID and
push it over optical fibre links to DAQ computers.
These are regular PCs with special data adapters
called D-RORCs (DAQ-Read Out Receiver Card)
connected to a PCI bus. Instead of communi-
cating directly with the FEE to find the number
of buffers in use, the Busy Box queries the D-
RORCs. Once a D-RORC has received the data
for an event from the FEE, it extracts the Event
ID and transmits it upon request to the Busy Box
over LVDS lines. The Busy Box also extracts
the Event ID from the Level 2 Accept trigger, but
stores it in a local queue. Once an Event ID en-
ters the queue, the Busy Box will start polling the
D-RORCs and compare the Event ID from the
trigger with that from every D-RORC. If all the
Event IDs match it can be safely assumed that all
the corresponding buffers are freed, and the used
buffers counter will be decremented. In this way
the number of free FEE buffers can be calculated
indirectly.

Traditionally the FEE in the detectors has gen-
erated its own busy signals. For the TPC alone,
however, there are more than 4000 Front-End
Cards but only 216 D-RORC cards. Communi-
cating with the D-RORCs therefore significantly
reduces the need for connections. Also, the D-

2

LVDS

Busy (LVDS)

TTC

CTP

LTU Busy Box

DRORCFEE
DDL

Counting RoomDetector

Figure 2: Illustration of Busy Box concept

RORC cards are placed in a counting room, away
from the radiation environment close to the de-
tector. By also placing the Busy Box in the same
counting room easy access is assured.

IV BUSY BOX

In the case of the TPC, the Busy Box needs to
communicate with the 216 D-RORCs over 15 me-
ters TP (Twisted Pair) cables with RJ-45 connec-
tors. Many of the other sub detectors have fewer
data links and hence, fewer D-RORCs. For this
reason the Busy Box is made modular (see fig-
ure 3). The motherboard has 40 ports for RJ-
45 connectors. If more ports are needed, mez-
zanine cards with 48 ports can be attached with
ribbon cables. The boards/cards are built in stan-
dard 19” rack cases up to five units in height. The
logic resources are provided by one or two Virtex-
4 FPGAs, depending on the number of ports re-
quired. The Virtex-4 FPGA in the ff1148 package
was chosen because it has many IO pins, supports
LVDS and supports programming by SelectMAP
[6].

Attached to the motherboard is a DCS card.
The DCS card is part of the DCS (Detector Con-
trol System) which monitors, configures and con-
trols most of ALICE. The DCS card is mainly
composed of an Altera EPXA1 (containing a 32
bit ARM processor), 8 MB Flash ROM, 32 MB
SDRAM and an Ethernet transceiver. With these

components it is able to run a lightweight version
of Linux. Device drivers for Linux have been de-
veloped so that programming the FPGA with Se-
lectMAP from a remote location is possible. This
feature, although very handy for the Busy Box,
was initially developed for the FEE which resides
inside the detector and is unreachable once the ac-
celerator has been started. The DCS card also has
a 16 bit wide bus interface to both FPGAs, allow-
ing software to access memory mapped registers
inside the FPGAs. The DCS board provides con-
nectivity to the trigger system and the Detector
Control System.

The main requirements for the firmware are to
provide communication with the D-RORCs and
an interface to the DCS bus and triggers. In ad-
dition it will do most of the work of processing
the incoming messages from the D-RORCs. It is
essential to implement as many of the low-level
functions in firmware as possible since it is faster
than the software. There will be two versions of
the motherboard, with one or two FPGAs. The
first FPGA is connected to the first 120 of the
RJ45 ports and the second to the 96 remaining.
Since the number of ports will vary for different
Busy Boxes, the firmware is designed to be scal-
able at compile time (by generics) to include any
number of ports from 1 to 120. The two FPGAs
will operate in parallel, with some simple logic in
the first FPGA to coordinate the busy-signal.

Every received message from the D-RORCs
will be stored in memory that is available to the

Figure 3: Picture of the inside of the Busy Box

3

software. The firmware also provides registers
for transmitting messages to any or all of the
connected D-RORCs. This allows software to
communicate with the D-RORCs directly so that
higher level error handling can be done in soft-
ware. It is also very useful for debugging in the
development phase.

Messages from the D-RORCs will also be
pushed into a FIFO queue for processing by the
firmware. Internal status registers for each D-
RORC will be updated as messages are processed.
The information in these registers will be used to
determine when all D-RORCs have received data
for the current Event ID or, if not, determine the
next appropriate action.

As described earlier, the Busy Box will request
the Event IDs from the D-RORCs. It will re-
ceive messages from all active D-RORCs contain-
ing the requested Event ID or a message saying
that the Event ID has not been received yet. The
Busy Box will wait until it has received messages
from all D-RORCs or until a programmable time-
out runs out and then re-request from those that
had not received the Event ID. The firmware will
retry this procedure a few times before it sets ap-
propriate error registers and allows software to re-
solve the error or report it to the DCS.

The communication logic on both sides (Busy
Box and D-RORC) runs on 200 MHz. Dedicated
hardware inside the Virtex-4 called Digital Clock
Managers are used to generate this clock in the
Busy Box. The D-RORCs are referenced to the
clocks of their host computer. This means that the
two devices do not share clock source and clock
skew and jitter noise is to be expected. A proto-
col that includes a bit clock in the encoded sig-
nal is desirable but due to the large number of
receivers that have to be implemented into a sin-
gle FPGA, Non-Return-to-Zero encoding is used.
Currently, the receivers utilizes 5x oversampling
which gives a bit rate of 40 Mbps. The receivers
will push samples into a shift register long enough
to contain samples for a complete word. When
the receiver sees valid start and stop bits in the
samples, it will use majority gates to determine
the value of each bit and store the resulting bits
in an output buffer. Parity checks are also im-

plemented to maintain data integrity. A message
from a D-RORC to the Busy Box is 48 bits. To
make the protocol more tolerant of jitter and keep
the receivers small, the 48 bits are transmitted as
3 times 16 bit words (with a very short timeout
between the words). This allows the receiver to
resynchronize to the bit stream more often. It also
reduces the probability that noise from floating
inputs produce garbage data by accident because
it is less likely that this noise will produce three
valid words consecutively.

V VERIFICATION

The design has been tested in simulations with the
QuestaSim software. For this purpose testbenches
has been written in VHDL that emulates the de-
vices that the Trigger Busy Box firmware will in-
terface with. For some of the emulated devices,
a dedicated VHDL entity has been written, others
are emulated by VHDL procedures that drives the
signals of the interface. A main test sequence pro-
cess calls procedures that controls the emulators
to interact with Busy Box firmware. The main test
sequence can easily be modified to simulate spe-
cific scenarios. The testbench does not automat-
ically verify the result but gives the opportunity
to study the functional operation of the design in
operation.

The first priority of the hardware tests was
to verify a reliable communication between the
Busy Box and the D-RORC. Several test setups
have been used in the different stages of devel-
opment. The first was a loopback test where the
Busy Box transmitted messages to itself through a
TP cable. By using the DCS board to access reg-
isters of the FPGA, messages can be sent, and the
received messages can be read out and verified by
software.

After some modifications to the firmware the
Busy Box was brought to CERN for testing with
the D-RORC. These tests were concluded with
a ”proof-of-concept” test where software running
on the DCS board controlled the communications
of the Busy Box. The test included retrieval of
an event ID form the D-RORC and successfully

4

comparing it with the event ID which was sent
from the LTU in emulator mode.

Further test of the communication has been per-
formed with another FPGA based device were
firmware have been developed specifically to em-
ulate the D-RORC in the absence of the real D-
RORC and the remaining components of a real
test setup.

D−RORC

D−RORC

D−RORC

D−RORC

D−RORC

D−RORC

Trigger Busy Box

0

1

2

3

5

4

LTU

P
C

I bus of host com
puter

CTP emulator

Event Data

Busy

Triggers

Event IDs

DAQ Computer

FEE units for one TPC−sector

Figure 4: Illustration of test setup.

Integration tests at CERN

Recently tests have been performed with the
current Busy Box design at CERN in a real test
environment, including real components and sev-
eral channels. The setup is illustrated in fig-
ure 4. On the detector side four complete FEE-
units have been used simultaneously (the TPC has
a total of 216 FEE-units). The FEE sampled float-
ing inputs instead of real detector signals to sim-
ulate data, and on the trigger side a real LTU has
been used. The LTU receives the BUSY-output
from the Busy Box and passes it on to the CTP.
Trigger inputs to the LTU will come from the CTP
in the final setup, but so far a CTP emulator has
been used instead. The CTP emulator will issue
triggers at a variable rate, as is expected in the
real system under normal operation. In the test
the Busy Box verifies that all event data has been
successfully transfered to the D-RORCs by com-
paring the Event IDs from the D-RORCs with the
Event IDs from the trigger system.

VI CONCLUSION

The modular design of the Busy Box and its scal-
ability makes it possible to use it with several AL-
ICE sub-detectors. This also allows independent
testing of different functionalities and makes it
easy to add new or modify existing ones. Both
during development and integration of the Busy
Box in a detector system, the combination of soft-
ware and firmware gives flexibility. So far labo-
ratory tests have been performed to verify basic
functionality, and error handling will be added.
Further commissioning tests using more channels
will be performed in the near future.

REFERENCES

[1] ALICE Collaboration, Technical Proposal For A
Large Ion Collider Experiment at the CERN LHC.
CERN/LHCC 1995-71, 1995.

[2] ALICE Collaboration, Technical Design Report of the
Time Projection Chamber, CERN/LHCC 2000-001,
ALICE TDR 7, 7 January 2000. ISBN 92-9083-155-3
https://edms.cern.ch/file/398930/1/ALICE-DOC-
2003-011.pdf

[3] L. Musa et al., The ALICE TPC Front End Electron-
ics, in proc. of the IEEE Nuclear Science Symposium,
Portland, October 2003.

[4] ALICE Collaboration, Technical Design Report of
the Photon Spectrometer (PHOS) CERN/LHCC
99-4, ALICE TDR 2, 5 March 1999. ISBN 92-9083-
138-3 https://edms.cern.ch/file/398934/1/Cover-
Contents.pdf

[5] Rossebø Anders, BUSY-logikk for ALICE TPC, Mas-
ter thesis, University of Bergen, 2006.

[6] Xilinx Inc., Virtex-4 User Guide v.1.5, January 2006.

[7] D. Evans, S. Fedor, G. T. Jones, P. Jovanović, A.
Jusko, I. Králik, R. Lietava, L. Šándor, J. Urbán
and O. Villalobos Baillie for the ALICE collabora-
tion. http://lhc-workshop-2005.web.cern.ch/lhc-
workshop-2005/ParallelSessionB/51-
OrlandoVillalobosBaillie.pdf

[8] ALICE collaboration, Technical Design Report of
the Trigger, Data Acquisition, High-Level Trigger
and Control System, CERN-LHCC-2003-062, AL-
ICE TDR 010, CERN, 2004. ISBN 92-9083-217-7.
https://edms.cern.ch/document/456354/

5

[9] Wiki-page of the Experimental Nuclear Physics group
at the Department of Physics and Technology at the
Univerity of Bergen: http://web.ift.uib.no/k̃jeks/wiki/

[10] J. Alme, TTC receiver requirement specification v1.1,
University of Bergen, 02.03.2007.

6

76 FPGAworld 2007 article

Appendix C

Abbreviations

ADC Analog to Digital Converter

ALICE A Large Ion Collider Experiment

ALTRO ALICE TPC ReadOut

ARQ Automatic Repeat reQuest

ASIC Application Specific Integrated Circuit

BC Bunch Crossing

CDH Common Data Header

CERN European Organisation for Nuclear Research

CHEN CHannel ENable

CLB Configurable Logic Block

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CRT Cosmic Ray Telescope

CTP Central Trigger Processor

D-RORC DAQ Read Out Receiver Card

DAQ Data Acquisition

DCM Digital Clock Manager

DCS Detector Control System

78 Abbreviations

DDG DDL Data Generator

DDL Detector Data Link

DIU Destination Interface Unit

DMA Direct Memory Access

EDA Electronic Design Automation

EIDOK Event ID OK

FEC Front End Card

FEE Front End Electronics

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GDC Global Data Concentrator

HDL Hardware Definition Language

HLT High Level Trigger

HMPID High Momentum Particle Identification Detector

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IRQ Interrupt Request

ITS Inner Tracking System

JTAG Joint Test Action Group

LAN Local Area Network

LDC Local Data Concentrator

LED Light Emitting Diode

LHC Large Hadron Collider

LSB Least Significant Bit

LTU Local Trigger Unit

79

LUT LookUp Table

LVDS Low Voltage Differential Signaling

MSB Most Significant Bit

MWPC Multi-Wire Proportional Chamber

NRZ Non-Return-to-Zero

OS Operating System

PASA Preamplifier and Shaper ASIC

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PC Personal Computer

PHOS Photon Spectrometer

PISO Parallel-In-Serial-Out

PLL Phase Locked Loop

PMCD Phase Matched Clock Divider

PMT PhotoMultiplier Tube

PROM Programmable Read Only Memory

QGP Quark-Gluon-Plasma

RAM Random Access Memory

RCU Readout Control Unit

RORC Read Out Receiver Card

SDRAM Synchronous Dynamic RAM

SIU Source Interface Unit

SRAM Static Random Access Memory

TCP/IP Transmission Control Protocol/Internet Protocol

TOF Time Of Flight

TPC Time Projection Chamber

80 Abbreviations

TP Twisted Pair

TQFP Thin Quad Flat Pack

TRD Transition Radiation Detector

TTC Timing, Trigger and Control

USB Universal Serial Bus

UiB University of Bergen

VHDL VHSIC Hardware Definition Language

VHSIC Very High Speed Integrated Circuits

Bibliography

[1] CERN. CERN Public web pages. http://public.web.cern.ch.

[2] Håvard Helstrup. Generell informasjon om kjernefysikk.
http://web.ift.uib.no/∼kjeks/mer.html.

[3] ALICE Collaboration. ALICE public web pages.
http://aliceinfo.cern.ch/Public/panorama/ALICE EYES/INSIDE ALICE/index2.html.

[4] ALICE TPC. ALICE TPC web pages. http://aliceinfo.cern.ch/TPC/index.html.

[5] Jørgen A. Lien. The Readout Control Unit of the ALICE TPC. PhD thesis, University of
Bergen, Bergen, Norway, 2004.

[6] CERN. ALICE TPC Readout Chip User Guide, DRAFT 0.2 edition, June 2002. UserMan-
ual draft 02.pdf.

[7] Introduction to DDL. http://ph-dep-aid.web.cern.ch/ph-dep-aid/.

[8] Introduction to RORC. http://ph-dep-aid.web.cern.ch/ph-dep-aid/.

[9] The ALICE Collaboration. Alice technical design report. Technical report, CERN, 2004.
ISBN 92-9083-217-7.

[10] Olav Torheim. Implementasjon av interrupt-styrd DMA-overføring på HLT-RORC. Mas-
ter’s thesis, University of Bergen, September 2005.

[11] Csaba Soos. Mail correspondence.

[12] Anders Rossebø. Busy-logikk for alice tpc. Master’s thesis, University of Bergen, June
2006.

[13] Johan Alme. TTC receiver requirement specification, 2007.

[14] Luciano Musa. ALICE TPC trigger system questionnaire, February 2007.

[15] Xilinx Inc. Virtex-4 Configuration Guide, v1.7 edition, July 2007. UG071.pdf.

[16] Jon Kristian Bernhardsen, Jan Martin Langeland, and Stian Skjerveggen. Hovedprosjekt -
selectMAP kernel module, 2006.

82 BIBLIOGRAPHY

[17] Xilinx Inc. Virtex-4 User Guide, v2.2 edition, April 2007. UG070.pdf.

[18] Neil H. E. Weste and David Harris. CMOS VLSI Design, chapter 7.7. Pearson Education,
Inc., third edition, 2005. ISBN 0-321-26977-2.

[19] Nick Sawyer. Data recovery. Xilinx application note, 2005. http://www.xilinx.com/.

[20] Ken Chapman. Multiplexer selection. Xilinx TechXclusives, January 2004.
http://www.xilinx.com/.

[21] Wolfgang Rauch. Busy generation for the ALICE DAQ, 2006.

[22] Ken Chapman. Get your priorities right - make your designs up to 50% smaller. Xilinx
TechXclusives, July 2004. http://www.xilinx.com/.

[23] Altera Corporation. MAX II Device Handbook, MII5V1-2.1 edition, December 2006.
max2 mii5v1.pdf.

[24] The root system homepage. http://root.cern.ch/.

	Introduction
	European Organisation for Nuclear Research (CERN)
	The Large Hadron Collider (LHC)
	Collision rates in the LHC
	A Large Ion Collider Experiment (ALICE)
	Time Projection Chamber (TPC)

	Data acquisition for ALICE TPC
	Introduction
	Front End Electronics (FEE) of TPC
	Front End Card (FEC)
	Readout Control Unit (RCU)

	Detector Data Link (DDL)
	Data Acquisition system
	Trigger system
	Central Trigger Processor (CTP)
	Trigger sequences
	Past-future protection
	Timing, Trigger and Control (TTC)
	Event ID

	Busy generation
	About this work

	Busy Box
	Busy Box hardware
	System overview
	DCS board
	Trigger message decoding

	LVDS driver for BUSY signal
	Virtex-4 FPGA
	Virtex-4 I/O banks

	Virtex-4 Programming Interfaces
	SelectMAP interface
	JTAG interface

	Busy Box circuit board
	Power supply

	Serial Communication with the D-RORCs
	Physical Layer
	Serial bit-encoding schemes
	Alternative solutions
	Basic operation
	Transmission error handling
	Messages

	Implementation
	Introduction
	Overview
	DCS bus arbiter and address decoder
	Receiver module
	Serial Receiver
	Multiplexer tree architecture

	Transmitter module
	Serial encoder
	Transmitter controller

	RX Memory module
	Trigger receiver module
	Event ID verification module
	Busy generator
	Control and status registers

	Testing and verification
	Simulation
	Simulating the Busy Box firmware

	Serial LVDS communication tests
	Loopback cable test
	First integration tests at CERN
	Test of communications with another device as D-RORC replacement

	More integration tests at CERN
	Integration test with a complete TPC sector

	Discussion and conclusion
	Firmware completion
	Identifying and exploring sources for error conditions
	Software for the DCS board
	Testing and integration of the finalized system
	Conclusion

	Firmware for readout electronics of a muon detector
	Introduction
	Cosmic rays
	Air showers and muons
	Muon detection

	The Cosmic Ray Telescope detector system
	Scintillator
	PhotoMultiplier Tube
	Asynchronous trigger circuits
	Digital readout electronics
	Data analysis and presentation

	Firmware implementation
	Overview
	Implementation

	Testing
	Simulation - Formal verification
	Synthesis and post-synthesis simulation
	Testing in real system

	Conclusion

	FPGAworld 2007 article
	Abbreviations

