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The Standard Model

The Standard Model

The Standard Model is today’s basic theory of fundamental matter
particles and their interactions.

It attempts to explain all the aspects of particle physics in terms of
the properties and interactions of three types of particles:

@ Leptons . .1
Matter particles of spin-5

@ Quarks

@ Gauge bosons Force carriers of spin-1

In the Standard Model all these particles are thought to be
elementary.
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The Standard Model Matter Particles

@ There are 3 generations of matter particles.
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The Standard Model Matter Particles

@ There are 3 generations of matter particles.

Generation Leptons Quarks

I e, Ve u, d
[l Hy Vy Cs
11 T, Ur t, b

@ The particle masses increase with increasing generation
number.
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The Standard Model

The Standard Model Matter Particles

@ There are 3 generations of matter particles.

Generation Leptons Quarks

I e, Ve u, d
[l Hy Vy Cs
11 T, Ur t, b

@ The particle masses increase with increasing generation
number.

@ Only the first generation of particles are stable.
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The Standard Model Matter Particles

@ Quarks carry colour charge (r, g, b).
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The Standard Model

The Standard Model Matter Particles

@ Quarks carry colour charge (r, g, b).

@ The theory states that only colour neutral objects can exist
freely.
@ The quarks are therefore only seen in bound colour neutral
states, called hadrons.
@ Two possible colour neutral combinations of quarks exist:
e Mesons consist of a qq pair.
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The Standard Model

The Standard Model Matter Particles

@ Quarks carry colour charge (r, g, b).

@ The theory states that only colour neutral objects can exist
freely.

@ The quarks are therefore only seen in bound colour neutral
states, called hadrons.

@ Two possible colour neutral combinations of quarks exist:

e Mesons consist of a qq pair.
o Baryons consist of three quarks of different colour.
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The Standard Model Force Carriers

@ In the Standard Model there are 3 types of forces:

e The electromagnetic force
o The weak force
e The strong force
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The Standard Model Force Carriers

@ In the Standard Model there are 3 types of forces:
e The electromagnetic force
o The weak force
e The strong force
@ The electromagnetic force is mediated by photons, 7.
The weak force is mediated by the W* and Z° bosons.
The strong force is mediated by gluons, g.
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The Standard Model Force Carriers

@ In the Standard Model there are 3 types of forces:
e The electromagnetic force
o The weak force
e The strong force
@ The electromagnetic force is mediated by photons, 7.
The weak force is mediated by the W* and Z° bosons.
The strong force is mediated by gluons, g.
@ The range of each force depends on the mass of the force
carrier.
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The Standard Model Force Carriers

@ In the Standard Model there are 3 types of forces:
e The electromagnetic force
o The weak force
o The strong force
@ The electromagnetic force is mediated by photons, 7.
The weak force is mediated by the W* and Z° bosons.
The strong force is mediated by gluons, g.
@ The range of each force depends on the mass of the force
carrier.
m, =0 = infinite range
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The Standard Model

The Standard Model Force Carriers

@ In the Standard Model there are 3 types of forces:
e The electromagnetic force
o The weak force
e The strong force
@ The electromagnetic force is mediated by photons, 7.
The weak force is mediated by the W* and Z° bosons.
The strong force is mediated by gluons, g.

@ The range of each force depends on the mass of the force

carrier.

my =0 = infinite range

my+ ~ 80.4 GeV s
mzo ~ 91.2 GeV = short range (~ 10 m)
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The Standard Model Force Carriers

@ In the Standard Model there are 3 types of forces:
e The electromagnetic force
o The weak force
e The strong force
@ The electromagnetic force is mediated by photons, 7.
The weak force is mediated by the W* and Z° bosons.
The strong force is mediated by gluons, g.

@ The range of each force depends on the mass of the force
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The Standard Model

The Standard Model Force Carriers

@ In the Standard Model there are 3 types of forces:
e The electromagnetic force
o The weak force
e The strong force

@ The electromagnetic force is mediated by photons, 7.
The weak force is mediated by the W* and Z° bosons.
The strong force is mediated by gluons, g.

@ The range of each force depends on the mass of the force

carrier.

m, =0 = infinite range

my+ ~ 80.4 GeV ~18
Mo ~ 91.2 GeV = short range (~ 107'° m)
mg =0 = short range (~ 10715 m)

Gluons carry colour charge, and are self-interacting.
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The LHC

@ The Large Hadron Collider (LHC) is a 27 km long accelerator
ring housed in an underground tunnel near Geneva.
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@ The Large Hadron Collider (LHC) is a 27 km long accelerator
ring housed in an underground tunnel near Geneva.

o It will accelerate protons and provide collisions with center of
mass energies of up to 14 TeV.
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The LHC

@ The Large Hadron Collider (LHC) is a 27 km long accelerator
ring housed in an underground tunnel near Geneva.

o It will accelerate protons and provide collisions with center of
mass energies of up to 14 TeV.

@ The LHC provides collisions for 4 main experiments:
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The ATLAS Experiment The LHC
The ATLAS Detector

The LHC

@ The Large Hadron Collider (LHC) is a 27 km long accelerator
ring housed in an underground tunnel near Geneva.

o It will accelerate protons and provide collisions with center of
mass energies of up to 14 TeV.

@ The LHC provides collisions for 4 main experiments:
ALICE

o LHCb
e CMS
o ATLAS
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The ATLAS Detector

The ATLAS Detector

@ The ATLAS detector is a multipurpose detector.
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The ATLAS Detector

@ The ATLAS detector is a multipurpose detector.

@ It has a cylindrical geometry with a diameter of about 22 m
and a length of about 44 m.
The total weight of the detector is about 7000 tonnes.
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@ The ATLAS detector is a multipurpose detector.

@ It has a cylindrical geometry with a diameter of about 22 m
and a length of about 44 m.
The total weight of the detector is about 7000 tonnes.

@ The ATLAS detector consists of four main subsystems:
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The ATLAS Experiment The LHC
The ATLAS Detector

The ATLAS Detector

@ The ATLAS detector is a multipurpose detector.

@ It has a cylindrical geometry with a diameter of about 22 m
and a length of about 44 m.
The total weight of the detector is about 7000 tonnes.

@ The ATLAS detector consists of four main subsystems:

The inner detector

The calorimeters

The muon spectrometers
The magnet systems
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The ATLAS Experiment The LHC
The ATLAS Detector

The ATLAS Detector Subsystems

The Inner Detector

The inner detector is located closest to the interaction point and
provides the highest granularity measurements. It provides high
resolution momentum measurements, and is also responsible for
the reconstruction of secondary vertices.
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The ATLAS Detector Subsystems

The Inner Detector

The inner detector is located closest to the interaction point and
provides the highest granularity measurements. It provides high
resolution momentum measurements, and is also responsible for
the reconstruction of secondary vertices.

The Calorimeters

The calorimeters provide high accuracy energy measurements and
distinguishes the hadrons from the electrons and photons in the
detector.
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The ATLAS Experiment The LHC
The ATLAS Detector

The ATLAS Detector Subsystems

The Inner Detector

The inner detector is located closest to the interaction point and
provides the highest granularity measurements. It provides high
resolution momentum measurements, and is also responsible for
the reconstruction of secondary vertices.

The Calorimeters

The calorimeters provide high accuracy energy measurements and
distinguishes the hadrons from the electrons and photons in the
detector.

The Muon Spectrometers
The muon spectrometer makes up the outermost parts of the

detector. Its main task is to identify the muons in the detector,
and to measure the muon momenta.

Maren Ugland Master Thesis Presentation




The ATLAS Experiment The LHC
The ATLAS Detector

The ATLAS Detector

Muon Detectors Electromagnetic Calorimeters

ATLAS

Detector characteristics
Width:  44m
Diameter: 22m
Weight: 7000t

\
Solenoid \\ ‘CERN AC - ATLAS V199;
\

Forward Calorimeters
/

End Cap Toroid

Barrel Toroid Inner Detector

Hadronic Calorimeters Shielding

Figure: Overall layout of the ATLAS detector.
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The ATLAS Experiment The LHC
The ATLAS Detector

Detector Geometry

In order to describe what we see in the ATLAS detector, we define
a common (right-handed) coordinate system.
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In order to describe what we see in the ATLAS detector, we define
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@ The z-axis is given by the beam direction.
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Detector Geometry

In order to describe what we see in the ATLAS detector, we define
a common (right-handed) coordinate system.
@ The z-axis is given by the beam direction.
The positive x-axis points from the interaction point (IP)
towards the center of the LHC ring.
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Detector Geometry

In order to describe what we see in the ATLAS detector, we define
a common (right-handed) coordinate system.
@ The z-axis is given by the beam direction.
The positive x-axis points from the interaction point (IP)
towards the center of the LHC ring.
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The ATLAS Detector

Detector Geometry

In order to describe what we see in the ATLAS detector, we define
a common (right-handed) coordinate system.
@ The z-axis is given by the beam direction.
The positive x-axis points from the interaction point (IP)
towards the center of the LHC ring.
The positive y-axis points upwards.

o The azimuthal angle ¢ = tan™! (%) .
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The ATLAS Experiment The LHC
The ATLAS Detector

Detector Geometry

In order to describe what we see in the ATLAS detector, we define
a common (right-handed) coordinate system.
@ The z-axis is given by the beam direction.
The positive x-axis points from the interaction point (IP)
towards the center of the LHC ring.
The positive y-axis points upwards.

o The azimuthal angle ¢ = tan™! (Z—i) .

o The pseudorapidity 7 = —In (tan (%)) .
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Physics Validation
with J/1) Events in ATLAS
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Physics Validation

@ Physics validation is an important tool both for simulated and
real data. By studying well known structures we acquire
valuable insight into the detector performance.
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real data. By studying well known structures we acquire
valuable insight into the detector performance.

@ Simulation studies tell us how well the detector’s
reconstruction algorithms perform.
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Physics Validation Variations in the J/+) Mass for Different Detector Regions

Physics Validation

@ Physics validation is an important tool both for simulated and
real data. By studying well known structures we acquire
valuable insight into the detector performance.

@ Simulation studies tell us how well the detector’s
reconstruction algorithms perform.

@ The output from real data can be compared to the output
from simulated data to make us aware of additional detector
effects.
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Variations in the J/1 Mass

@ Using 89,000 simulated J/¢ — ptu~ events, we investigate
variations in the J/v mass in different detector regions.
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Introduction
Physics Validation Variations in the J/v¢ Mass for Different Detector Regions

Variations in the J/1 Mass

@ Using 89,000 simulated J/¢ — ptu~ events, we investigate
variations in the J/v mass in different detector regions.

@ Since this is a simulation study, we start by examining the
reconstruction efficiency:

# reconstructed muons

€ =
# generated muons
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Physics Validation Variations in the J/v¢ Mass for Different Detector Regions
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Figure: Muon reconstruction efficiency for different pr-regions as a
function of pseudorapidity
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Interpretation of the Efficiency Figures

@ The dips around |n| = 0 and 1.4 correspond to transition
regions in the detector.
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Interpretation of the Efficiency Figures

@ The dips around |n| = 0 and 1.4 correspond to transition
regions in the detector.

o At zero, the inefficiency is caused by the feet of the detector
and by services, like cables and cryogenic lines, to the inner
detector.
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Interpretation of the Efficiency Figures

@ The dips around |n| = 0 and 1.4 correspond to transition
regions in the detector.

o At zero, the inefficiency is caused by the feet of the detector
and by services, like cables and cryogenic lines, to the inner
detector.

o At |n| = 1.4, it is caused by the extra material introduced at
the transition region between the barrel and end-cap
components of the calorimeters.
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Interpretation of the Efficiency Figures

@ The dips around |n| = 0 and 1.4 correspond to transition
regions in the detector.

o At zero, the inefficiency is caused by the feet of the detector
and by services, like cables and cryogenic lines, to the inner
detector.

o At |n| = 1.4, it is caused by the extra material introduced at
the transition region between the barrel and end-cap
components of the calorimeters.

o The final dips (at |n| ~ 2.5) are due to detector limitations in
the area close to the beam pipe.
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Variations in the J/1 Mass

@ Based on the dips and rises in the efficiency plots, the detector
is divided into five positive and five negative n-regions:
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is divided into five positive and five negative n-regions:
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Variations in the J/1 Mass
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is divided into five positive and five negative n-regions:
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@ In addition, we separate between four different pr-regions:
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Variations in the J/1 Mass

@ Based on the dips and rises in the efficiency plots, the detector
is divided into five positive and five negative n-regions:

In| €[0,0.2),[0.2,1.3),[1.3,1.5),[1.5,2.0), and [2.0,—)

@ In addition, we separate between four different pr-regions:

pT € [4,6),[6,8),[8,10), and [10,—)

e The J/1 mass is reconstructed, requiring both muons to be in
the same 7-region.
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Variations in the J/1 Mass

@ Based on the dips and rises in the efficiency plots, the detector
is divided into five positive and five negative n-regions:

In| €[0,0.2),[0.2,1.3),[1.3,1.5),[1.5,2.0), and [2.0,—)

@ In addition, we separate between four different pr-regions:

pT € [4,6),[6,8),[8,10), and [10,—)

e The J/1 mass is reconstructed, requiring both muons to be in
the same 7-region.

@ Because of lacking statistics, only one muon is required to be
in the desired py-region.
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Physics Validation

Variations in the J/v¢ Mass for Different Detector Regions
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Figure: Summary of the fit results from the previous figure and from a
similar collection of plots for regions of positive 7, as a function of
n-region.
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Figure: Summary of the fit results as a function of pr-region.
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Variations in the J/1 Mass

@ The mass and standard deviation becomes larger as |7|
increases.
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Variations in the J/1 Mass

@ The mass and standard deviation becomes larger as |7|
increases.

@ The increasing mass is an effect of an over-correction in the
reconstruction algorithms.
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Physics Validation Variations in the J/v¢ Mass for Different Detector Regions

Variations in the J/1 Mass

@ The mass and standard deviation becomes larger as |7|
increases.

@ The increasing mass is an effect of an over-correction in the
reconstruction algorithms.

@ No dependence upon pr is observed.
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Introduction
Physics Validation Variations in the J/v¢ Mass for Different Detector Regions

Variations in the J/1 Mass

@ The mass and standard deviation becomes larger as |7|
increases.

@ The increasing mass is an effect of an over-correction in the
reconstruction algorithms.

@ No dependence upon pr is observed.

e For |n| € [1.3,1.5) and [2.0,—), the reconstructed J/t¢) mass
seems to be higher in the negative pseudorapidity regions of
the detector.

Maren Ugland Master Thesis Presentation



Introduction
Physics Validation Variations in the J/v¢ Mass for Different Detector Regions

Variations in the J/1 Mass

@ The mass and standard deviation becomes larger as |7|
increases.

@ The increasing mass is an effect of an over-correction in the
reconstruction algorithms.

@ No dependence upon pr is observed.

e For |n| € [1.3,1.5) and [2.0,—), the reconstructed J/t¢) mass
seems to be higher in the negative pseudorapidity regions of
the detector.

@ This is probably an effect of the low statistics in these regions.

Maren Ugland Master Thesis Presentation



Introduction
Physics Validation Variations in the J/v¢ Mass for Different Detector Regions

Variations in the J/1 Mass

@ Variations in the J/1) mass for different regions of |¢| were
also studied.

Maren Ugland Master Thesis Presentation



Introduction
Physics Validation Variations in the J/v¢ Mass for Different Detector Regions

Variations in the J/1 Mass

@ Variations in the J/1) mass for different regions of |¢| were
also studied.

@ No discrepancy between positive and negative values of ¢ was
observed.
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Introduction
Physics Validation Variations in the J/v¢ Mass for Different Detector Regions

Variations in the J/1 Mass

@ Variations in the J/1) mass for different regions of |¢| were
also studied.

@ No discrepancy between positive and negative values of ¢ was
observed.

@ Only minor fluctuations in the J/¢ mass were seen as a
function of |¢|.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

@ The signal sample consists of 14,750
BY — J/(utp™)p(KTK™) events.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

@ The signal sample consists of 14,750
BY — J/(utp™)p(KTK™) events.

@ Since we are looking at signal only, we first try to reconstruct
the Bs mass for “all” combinations of muon and kaon tracks.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

@ The signal sample consists of 14,750
BY — J/(utp™)p(KTK™) events.

@ Since we are looking at signal only, we first try to reconstruct
the Bs mass for “all” combinations of muon and kaon tracks.

| Invariant mass of J/Psi and Phi candidates, signal |

0
& 5000
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Number of entri

2000

1000

Roo 4000 6000 8000 10000 12000 14000 16000 18000 20000
Mass [MeV/c?]
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J /¢ Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

@ To clean up the picture, we add some simple requirements:
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

@ To clean up the picture, we add some simple requirements:

Observable Criteria
Muon transverse momentum >4+ 6 GeV
Fit of muon tracks, x?/dof < 4.0

Best vertex quality of Bs, x?/dof —
J /1 mass w £ 30 (from fit)

¢ mass u £ 20 (from fit)
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

The J/1¢ and ¢ mass were obtained from a Gaussian fit to the
invariant 1t~ and KK~ mass, respectively, after the selection
criteria in the table rows above were employed.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

The J/1¢ and ¢ mass were obtained from a Gaussian fit to the
invariant 1t~ and KK~ mass, respectively, after the selection
criteria in the table rows above were employed.
o Obtained: f1/,, = (3101.7 & 0.9) MeV ,
oy = (65.34 & 0.64) MeV.
PDG value: m,/, = (3096.916 + 0.011) MeV.
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Examining the Signal
Adding Backgrounds
Signal Selection

Bs Mass in Bs — J/v¢p — quu* K"K~ Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

The J/1¢ and ¢ mass were obtained from a Gaussian fit to the
invariant 1t~ and KK~ mass, respectively, after the selection
criteria in the table rows above were employed.
o Obtained: f1/,, = (3101.7 & 0.9) MeV ,
oy = (65.34 & 0.64) MeV.
PDG value: m,/, = (3096.916 + 0.011) MeV.
o Obtained: 4 = (1019.5 £ 0.1) MeV ,
o4 = (5.104 £ 0.187) MeV.
PDG value: my = (1019.455 + 0.020) MeV.
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Examining the Signal
Adding Backgrounds
gnal Selection
Mass from the Combined Sample

| Invariant mass of J/Psi and Phi candidates, signal |
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J /¢ Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

| Invariant mass of J/Psi and Phi candidates, signal |
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The mean mass and standard deviation from the Gaussian fit are:
us, = (5368.7 + 2.1) MeV , o, = (106.7 &+ 1.5) MeV.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Reconstructed B; Mass from the Signal

| Invariant mass of J/Psi and Phi candidates, signal |
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The mean mass and standard deviation from the Gaussian fit are:
us, = (5368.7 + 2.1) MeV , o, = (106.7 &+ 1.5) MeV.

This is slightly higher than the PDG value:
mpg, = (5366.3 + 0.6) MeV.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J, h — quu* K"K~ Bs Mass from the Combined Sample

Adding Backgrounds

@ 2 relevant types of background is added:
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Adding Backgrounds

@ 2 relevant types of background is added:

e Generic B background:
143,750 bb — putpu=X or bb — J /(™)X events.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Adding Backgrounds

@ 2 relevant types of background is added:

e Generic B background:

143,750 bb — putpu=X or bb — J /(™)X events.
o Direct J/4 background:

40,425 pp — J /(™)X events.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Adding Backgrounds

@ 2 relevant types of background is added:
e Generic B background:
143,750 bb — putpu=X or bb — J /(™)X events.
o Direct J/4 background:
40,425 pp — J /(™)X events.
@ For the ratio between the signal events and the different
background events to mimic that of real data, we introduce a
weighting scheme for the background samples:

J initial signal histogram
W=

flmtlal background histogram
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Reconstructed Bs; Mass from the Combined Sample

The pu™p~ K™K~ invariant mass is reconstructed from the
combined signal plus weighted background samples:
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Reconstructed Bs; Mass from the Combined Sample

The pu™p~ K™K~ invariant mass is reconstructed from the
combined signal plus weighted background samples:

Reconstructed BsO mass_
x10°
250

200

Number of entries

150~

100~

Signal peak

501

&00 4000 6000 8000 10000 12000 14000 16000 18000 20000
Mass [MeV/c?]

Figure: The reconstructed Bs mass before any selection criteria is
imposed
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J, Bs Mass from the Combined Sample

Signal Selection

@ Start by introducing some simple selection criteria:
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Signal Selection

@ Start by introducing some simple selection criteria:

Observable Criteria
Muon transverse momentum >4 + 6 GeV
Fit of muon tracks, X2/dof < 4.0
J/1p mass p = 30 (from fit)
Best pointing angle of B; —
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Examining the Signal

Adding Backgrounds

Signal Selection

Bs Mass from the Combined Sample

Bs Mass in Bs — J

Signal Selection

@ Start by introducing some simple selection criteria:

Observable Criteria
Muon transverse momentum >4 + 6 GeV
Fit of muon tracks, X2/dof < 4.0
J /1 mass p = 30 (from fit)
Best pointing angle of B; —

@ In addition, the following variables look promising:

e Pointing angle
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Examining the Signal

Adding Backgrounds

Signal Selection

Bs Mass from the Combined Sample

Bs Mass in Bs — J

Signal Selection

@ Start by introducing some simple selection criteria:

Observable Criteria
Muon transverse momentum >4 + 6 GeV
Fit of muon tracks, X2/dof < 4.0
J /1 mass p = 30 (from fit)
Best pointing angle of B; —

@ In addition, the following variables look promising:

e Pointing angle
o B; transverse vertex displacement
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Signal Selection

@ Start by introducing some simple selection criteria:

Observable Criteria
Muon transverse momentum >4 + 6 GeV
Fit of muon tracks, X2/dof < 4.0
J /1 mass p = 30 (from fit)
Best pointing angle of B; —

@ In addition, the following variables look promising:

e Pointing angle
o B; transverse vertex displacement
e Kaon transverse momentum.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Signal Selection

@ Start by introducing some simple selection criteria:

Observable Criteria
Muon transverse momentum >4 + 6 GeV
Fit of muon tracks, X2/dof < 4.0
J /1 mass p = 30 (from fit)
Best pointing angle of B; —

@ In addition, the following variables look promising:
e Pointing angle
o B; transverse vertex displacement
e Kaon transverse momentum.
e B; vertex quality
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Bs Mass in B,

Bs0 vertex quality
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Signal Selection

@ To remove as much background as possible while keeping as
much of the signal as we can, a parameter known as the
sensitivity is introduced:
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Signal Selection

@ To remove as much background as possible while keeping as
much of the signal as we can, a parameter known as the
sensitivity is introduced:

R #£signal events
~ /#signal events + #background events
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Signal Selection

@ To remove as much background as possible while keeping as
much of the signal as we can, a parameter known as the
sensitivity is introduced:

B #£signal events
~ /#signal events + #background events

@ Only the mass window between 5100 MeV and 5700 MeV is
considered.
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Examining the Signal
Adding Backgrounds
Signal Selection

Bs Mass in Bs — Bs Mass from the Combined Sample

Signal Selection

z z 2
z ! 2% Se3
-] ES =
@ 38 @ 57 Se2
336 8 se ]
61
34 55
oF
32 saf
59
3 53
. 58
28 52
26 57
| | I S1E \
02 04 06 08 1 02 (X3 0. 8 1 00 000 1200
Pointing angle transverse vertex displacement

1400 1600
track momentum

When calculating the sensitivity we have assumed an integrated
luminosity of 1 fb~1.

Maren Ugland Master Thesis Presentation



Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — quu* KTK™ Bs Mass from the Combined Sample

Signal Selection

Based on the sensitivity plots, we employ the following criteria in

addition to the ones already mentioned:
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Examining the Signal

Adding Backgrounds

Signal Selection

Bs Mass from the Combined Sample

Bs Mass in B — J/v¢¢ — wtp T KTK—

Signal Selection

Based on the sensitivity plots, we employ the following criteria in

addition to the ones already mentioned:

Observable Optimized Criteria | Sensitivity
Pointing angle of B; <0.3 4.01
Transverse vertex displacement > 04 5.80
> 0.9 GeV 6.32

Kaon transverse momentum

Maren Ugland Master Thesis Presentation



Examining the Signal

Adding Backgrounds

Signal Selection

Bs Mass from the Combined Sample

Bs Mass in B — J/v¢¢ — wtp T KTK—

Signal Selection

Based on the sensitivity plots, we employ the following criteria in

addition to the ones already mentioned:

Observable Optimized Criteria | Sensitivity
Pointing angle of B; <0.3 4.01
Transverse vertex displacement > 04 5.80
> 0.9 GeV 6.32

Kaon transverse momentum

The table also lists the sensitivity obtained after each new criteria

is introduced.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Reconstructed Bs; Mass from the Combined Sample

The reconstructed ™~ K+ K™ invariant mass after optimizing
the selection criteria and including an additional cut on the ¢ mass:

| Reconstructed Bs0 mass | p0 1.248
8,
27F p1 27.8
2 35
w5 35F
3 30 p2 5376
£k
2% p3 586
200
15 ;
10 ;
Hoo 5200 5300 5400 5500 5600 5700

Mass [MeV/c?]
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — wtp T KTK— Bs Mass from the Combined Sample

Reconstructed Bs; Mass from the Combined Sample

The reconstructed ™~ K+ K™ invariant mass after optimizing
the selection criteria and including an additional cut on the ¢ mass:

| Reconstructed Bs0 mass | p0 1.248
8,
27F p1 27.8
2 35
w5 35F
3 30 p2 5376
£k
2% p3 586
200
15 ;
10 ;
Hoo 5200 5300 5400 5500 5600 5700

Mass [MeV/c?]

From the fit we obtain the following mean mass and standard
deviation: upg, = (5376.2 + 2.6) MeV , op, = (58.6 &+ 2.4) MeV.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in Bs — J Bs Mass from the Combined Sample

Summary and Conclusions

@ We have performed a validation study using simulated
J/v — ptu~ events and looked for variations in the invariant
mass distribution for various regions of the ATLAS detector.
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Bs Mass in Bs — J Bs Mass from the Combined Sample

Summary and Conclusions

@ We have performed a validation study using simulated
J/v — ptu~ events and looked for variations in the invariant
mass distribution for various regions of the ATLAS detector.

@ It was shown that the mass increases at larger values of |n],
while only minor fluctuations were present as a function of |¢|.
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Bs Mass in B — J/v¢¢ — wtp T KTK— Bs Mass from the Combined Sample

Summary and Conclusions

@ We have performed a validation study using simulated
J/v — ptu~ events and looked for variations in the invariant
mass distribution for various regions of the ATLAS detector.

@ It was shown that the mass increases at larger values of |n],
while only minor fluctuations were present as a function of |@|.

@ A separate study was performed to reconstruct the Bs mass
using Bs — J/19¢ — uTpu~ KT K™ events.
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — wtp T KTK— Bs Mass from the Combined Sample

Summary and Conclusions

@ We have performed a validation study using simulated
J/v — ptu~ events and looked for variations in the invariant
mass distribution for various regions of the ATLAS detector.

@ It was shown that the mass increases at larger values of |n],
while only minor fluctuations were present as a function of |@|.

@ A separate study was performed to reconstruct the Bs mass
using Bs — J/19¢ — uTpu~ KT K™ events.

@ 2 separate types of backgrounds were investigated, and it was
shown that by applying some simple selection criteria, we
could separate these from the signal.
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Signal Selection
Bs Mass in B — J/v¢¢ — wtp T KTK— Bs Mass from the Combined Sample

Summary and Conclusions

@ We have performed a validation study using simulated
J/v — ptu~ events and looked for variations in the invariant
mass distribution for various regions of the ATLAS detector.

@ It was shown that the mass increases at larger values of |n],
while only minor fluctuations were present as a function of |@|.

@ A separate study was performed to reconstruct the Bs mass
using Bs — J/19¢ — uTpu~ KT K™ events.

@ 2 separate types of backgrounds were investigated, and it was
shown that by applying some simple selection criteria, we
could separate these from the signal.

@ The obtained mass after an optimized selection was (5376.2
+ 2.6) MeV with a (58.6 + 2.4) MeV standard deviation.
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Adding Backgrounds
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Bs Mass in B — J/v¢¢ — wtp T KTK— Bs Mass from the Combined Sample

Summary and Conclusions

@ We have performed a validation study using simulated
J/v — ptu~ events and looked for variations in the invariant
mass distribution for various regions of the ATLAS detector.

@ It was shown that the mass increases at larger values of |n],
while only minor fluctuations were present as a function of |@|.

@ A separate study was performed to reconstruct the Bs mass
using Bs — J/19¢ — uTpu~ KT K™ events.

@ 2 separate types of backgrounds were investigated, and it was
shown that by applying some simple selection criteria, we
could separate these from the signal.

@ The obtained mass after an optimized selection was (5376.2
+ 2.6) MeV with a (58.6 + 2.4) MeV standard deviation.

@ The expected value of mg, = (5366.3 £+ 0.6) MeV is lower,
but it was explained that this is due to an over-correction in
the muon reconstruction algorithms.
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Thank you!
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Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — wtp T KTK— Bs Mass from the Combined Sample

Summary

We have successfully separated the signal from the background

using the following simple selection criteria:

Observable Criteria
Muon transverse momentum >4+ 6 GeV
Fit of muon tracks, x?/dof < 4.0
J /1 mass p £ 30 (from fit)
¢ mass p £+ 20 (from fit)
Best pointing angle of Bs —
Pointing angle of Bs <03
Transverse vertex displacement > 04
Kaon transverse momentum > 0.9 GeV

Maren Ugland Master Thesis Presentation



Examining the Signal
Adding Backgrounds
Signal Selection
Bs Mass in B — J/v¢¢ — wtp T KTK— Bs Mass from the Combined Sample

Summary

The obtained Bs mass pp, = (5376.2 £ 2.6) MeV

and standard deviation o, = (58.6 & 2.4) MeV.

Compared to the expected value, mg, = (5366.3 £ 0.6) MeV, the
obtained mass is slightly high.

This is due to an over-correction in the muon reconstruction
algorithms.
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Back-up slides
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LHC Injection Chain

LHC 7 TeV p-p

2.8 TeV/n Pb-Pb

P FROTONS
B> 10NS

BCOSTER
1.4 GaV

ICN
ACCUMULATOR
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Central Sole%
. Barrel Toroid
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Magnets
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Endcap Toroid
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Bs Mass in Bs — J/

Inner Detector

Forward SCT
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Examining the Signal

Adding Backgrounds

Signal Selection

Bs Mass from the Combined Sample

Barrel SCT

Pixel Detectors
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SIEGERS]
Bs Mass in B. - Bs Mass from the Combined Sample

Calorimeters

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr eleciromagnetic
end-cap (EMEC)

LAr eleciromagnetic
barrel
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Adding Backgrounds
Signal Selection
Bs Mass in Bs — J/v¢p — pwtp=KTK— Bs Mass from the Combined Sample

Muon Spectrometers

Thin-gap chambers (T&C)

Cathode strip chambers (CSC)

Barrel toroid

. Resistive-plate
chambers (RPC)

End-cap toroid
Monitored drift tubes (MDT)
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Muon Spectrometers

Examining the Signal

Adding Backgrounds

Signal Selection

Bs Mass from the Combined Sample
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Bs Mass in Bs — / - Bs Mass from the Combined Sample

Trigger System

Latency CALO MUON TRACKING Rate [Hz]

40 x 108
L1 Pipeline
Memories

<25ps <75x 10

Derandomizing
buffers
| | | | | |Read0ul Drivers
(RODs)

Readout buffers
~ 40 ms (ROBs)

L2

~35x 108

[ Event builder

Event
.45 filter

Full-event buffers and
processor sub-farms

~ 200
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