

Higgs 2020 Program Committee

Sally Dawson (BNL/YITP) Maria Cepeda Hermida (CIEMAT) Marumi Kado (INFN, Rome I, IJCLab) Paolo Meridiani (INFN, Rome I) Giacinto Piacquadio (SBU) Tilmann Plehn (Heidelberg U.) James Wells (Michigan U.)

Highlights from HIGGS2020 conference

Higgs 2020 Virtual Local Organising Committee

Francesco di Bello (Rome, Sapienza) Valerio Ippolito (Rome, Sapienza) Emanuele di Marco (Rome, Sapienza) Shigeki Hirose (Tsukuba)

Valerio Dao (CERN)

ATLAS weekly - 10-11-2020

H. Murayama

Higgs exists!

Why do we still care?

'Quick Answers'

Precision measurements

- mass, width
- spin, CP, couplings
- off-shell coupling, width interferometry
- differential distributions

Rare / beyond SM decays

- $H \rightarrow Z\gamma$
- H **→** µµ
- H → cc

- $H \rightarrow J/\Psi\gamma, Y\gamma$, ...

... and much more

- Higgs potential
- di-Higgs
- other FCNC decays

Dao Valerio

is 200m webinar the best format for a CONF?

+ A very dense program: <u>https://indico.cern.ch/event/900384/timetable/</u>

◆ 664 registered participants, ~200 (70-150) simultaneous connection for plenary (parallel talks)

10.00	Mon	Tue	Wed	Thur	Fri
12.30	opening				future prospects
	precision			Di-Higgs	future prospects
	precision	YSF	BSM	YSF	
18 30	opening	precision	public lecture	EFT	

- 10 Plenary sessions, 2 Plenary Young scientist sessions (8 talk), 15 parallel sessions (always three at the time) —> 98 talks!!!
- interesting mixing of theory and exp. in each session, most experimental talks were ATLAS+CMS

Impossible to summarise in 15 min (apology if I omit your favourite topic!!)

What is new at HIGGS2020?

New Results since Higgs Couplings 2019

The experimental community is very active in analysing Run2 data:

 a large amount of updated and new results came out for ICHEP (H->µµ, VBF H->WW, full combination)

New Results this Week!

CMS: new di-Higgs in bbγγ full Run 2

Talk tomorrow by Soumya Mukherjee

• ATLAS:

- VBF inclusive H \rightarrow bb and incl.+photon combination: Zhijun Liang on Tuesday
- Dark Matter search with H → yy + MET: Samuel Ross Mehan on Thursday in th "Beyond the Standard Model III" parallel session
- VBF & ggF+2-jet H → WW 36/fb properties: Shown by Merjin Van De Klundert
- ttH, H → bb with >= 1 lepton: Shown by Valeria Botta on Tuesday
- Combination MSSM/EFT interpretation: Shown by Saskia Falke on Thursday
- H \rightarrow invisible combination: Shown by Benedikt Maier on Wednesday

also: H++, V+jets inputs to PDF,

ATLAS kept the bar quite high by providing several new results:

 full Run2 updates, more combinations, more interpretations

 WARNING: this is not a review of ATLAS Higgs results

The revenge of H->bb

Dao Valerio

+ New level of precision in Higgs measurements from full Run2 dataset:

- inclusive Higgs production measured at <10% accuracy
- all 5 main production modes observed
- assessing kinematics of production: multiple bins measured simultaneously with precision ranging from 20% to 100% accuracy
- expanded list of differential distributions, first doubledifferential distributions

			STXS 1.2)		$(\sigma \times BR)$	κa	nd MSSN
Exp	PMode	$H \rightarrow \gamma \gamma$	$H ightarrow ZZ^*$	$H ightarrow bar{b}$	$H ightarrow WW^*$	H ightarrow au au	$H ightarrow \mu \mu$	H ightarrow in
	ggF	Full Run2	Full Run2	_ (*)	2015-16	2015-16	Full Run2	-
S	VBF	Full Run2	Full Run2	<u>2015-16 (*)</u>	2015-16(*)	2015-16	Full Run2	Full Rur
Š	WH	Full Run2	Full Run2	Full Run2	-	-	Eull Dun2	-
Ę	ZH	Full Run2	Full Run2	Full Run2	-	-		-
	tŦH	Full Run2	Full Run2	2015-16 (*)	2015-16(*)	2015-16	Full Run2	-
	tH	Full Run2	-	-	-	-	-	-
	ggF	2015-17(*)	Full Run2	2015-16(*)	2015-16(*)	2015-17(*)	2015-16(*)	-
	VBF	2015-17(*)	Full Run2	-	2015-16	2015-17(*)	2015-16(*)	-
4S	WH	- (*)		2015-17	2015-16	001E 17(*)	_ (*)	-
บี	ZH	- (*)	Full Run2	2015-17	2015-16	2015-17(")	_ (*)	-
	tτH	2015-17(*)	Full Run2	2015-17	-	2015-16	- (*)	-
	tH	-	-	-	-	-	-	-
		•					μ and κ	0 ".

(*) Note: more updated analyses available and not included in the combinations

good agreement with SM predictions let's use them for setting limits on NP

Dao Valerio

- Dedicated analyses targeting specific effects:
 - CP-odd operators in H->ττ and ttH
- Measuring bins of kinematic distributions allows to be sensitive to a larger variety of new physics effects (in a less optimal way due to practical choices)
- We are able to probe multiple EFT operators simultaneously:
 - still non negligible correlation/degeneracy (leading effort from ATLAS in dealing with them)

Interesting proposal on how to get the best of the two worlds: <u>K. Cranmer</u>, <u>F. Kling</u>

ML-based method to estimate Likelihood dependency on NP set using full event kinematics

EFT theory view

Large number of Wilson coefficients and correlations between processes call for a global analysis

This demands a large effort form the experimental and theoretical communities

- profile sensitivity of different processes (Higgs, Diboson, EWPO, top ...) to various operators: what is interesting to measure?
- implement the effect of operators in higher order generators, inclusion of loop effects
- understanding validity range of EFT approach (beyond lowest order effects, Dim6 VS Dim8 operators effects)
- how to make our results available to the outside word? (see HEPdata talk)

B. Schuve

Direct searches for new physics: a snapshot

D. Curtin et al., 1312.4992, PRD 90 (2014)

PROMPT DECAYS

- Many, MANY searches proposed in exotic Higgs decay paper. How do we do now, 7 years later?
- h to ss to 4 fermions: pretty good coverage of 4b, 2b+2lepton, 4 lepton (taus & muons)

e.g., ATLAS 1806.07355; CMS 1812.06359; CMS 2005.08694

h to ss to 4 gauge bosons: some searches for 2 photon + 2 gluon, 4 photons

e.g., ATLAS 1509.05051; ATLAS 1803.11145

- h to two dark photons, Z + A': extensive searches with leptonic decays of dark photon
 e.g., ATLAS 1802.03388, CMS 1812.00380, ATLAS 2004.01678
- Flavour-violating decays: $h
 ightarrow ar{\ell} \ell'$

e.g., ATLAS 1909.10235, CMS 1911.10267

J. Alimena et al., 1903.04497, J.Phys.G 47 (2020)

HIGGS + LONG-LIVED

- Recently published LLP white paper takes a comprehensive look at (gaps in) coverage of LLP signatures, including from Higgs decays
- Where coverage is currently pretty solid:
 - LLP produced in Higgs decays & decaying to muons (some coverage of other flavour combinations too)
 ATLAS, 1808.03057, PRD 99 (2019); CMS, 1409.4789, PRL 114 (2015) ATLAS, 1504.05162, PRD 92 (2015)
 - Multiple lepton jets (collimated sprays of leptons + pions)
 ATLAS, 1909.01246, EPJC 80 (2020)
 - 1 or 2 LLPs produced in Higgs decays & decaying hadronically, provided they live long enough to reach HCAL and/or MS

 Investigations ongoing also in extended Higgs sectors: H^{±±} pair and single production in multi lepton final states

.... and many more ...

ATLAS, 1911.12575, PRD 101 (2020) AS weekly

searches H->invisible

+ ATLAS has an updated combination:

briefing

- Full Run2 (VBF+ttH) + Run1 (VBF+ZH+VHhad)
- first re-interpretation of SUSY tt+MET searches for H->inv signal

- ✦ H->inv Br 95% U.L.: 11% (11%) obs. (exp)
 - [dominated by VBF Run2 (13%)]
 - asked few times why we didn't include previous ZH or status of the full Run2 one
- ongoing ATLAS II+MET analysis has ~20% UL exp. ... and more to come
 - VBF improvement, VBF+y, VHhad, more ttH channels

CMS: only ZH-> II+MET updated to full Run2

not so stat. limited

Total systematic uncertainty	0.11
Statistical uncertainty	0.089
Total uncertainty	0.14

- ♦ H->inv Br 95% U.L.:
 - ZH (full Run2): 29% (25%) obs. (exp)
 [was ~40% in 36fb⁻¹]
 - previous Run1+Run2(36fb⁻¹) combo:
 19% (15%) obs. (exp)

Dao Valerio

CERN

CMS Preliminary

Data

Events / 0.01

106

10⁵

10⁴

 10^{3}

10²

10

10

137 fb⁻¹ (13 TeV

ttHScore

ggH 📃 VBF H

ggF HH→γγbb̄ x 10³ 🧾 VH 🕅 tṫH

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2y + 2 b-jets + (2 jets for VBF):

- b-jets: pt>25 GeV, highest b-tag score, mbb in [70,190]
- VBF jets: p_T>40/30 GeV, highest m_{ii}
- several MVAs used (variables in backUp):
 - isolate different production modes (also in bins of MX)
 - reject main ttH background
 - SM signal and BSM benchmarks used in the training together

HH->bbyy: CMS (result)

-- Statistically dominated analysis

-- Total impact of systematics on signal strengths is around 2%

 x4 reduction of upper limit with x4 more data

ATLAS full Run2 result expected in early 2021:

- + analysis selection / categorisation has been frozen
- systematics are being evaluated (impact expected to be small) [few %]

CMS:

- + exp. constrain of k₁ is [-2.5, 8.2]
- + exp. limit on SM HH: 5.2 times prediction

ATLAS:

- + exp. constrain of *k*[↓] is [-2.6, 8.1]
- exp. limit on SM HH: 5.5 times prediction

ATLAS results competitive with CMS one!

ATLAS weekly

Courtesy of

HH->bbyy

group

NNLO 🔯

90 100 110 120

Theory efforts

ATLAS weekly

1.04

A bridge between past and future

The Higgs boson and more

Luciano Maiani Sapienza Università di Roma

• we should keep *all options* open...for the time being.

• LHC , HL-LHC or a Higgs factory (see later) could search for precursor signals of high energy new physics in deviations from ST of Higgs decays;

• or find SUSY particles and /or other Higgs bosons and/or Techicolor bound state

Higgs 2020, Roma

L. Maiani. The Higgs boson and more

October 28, 2020

A few lessons learned

•Do not save on tunnel: a long and large tunnel has a longer lifetime than the first machine you put in;

•A global project, but centralised construction and responsibility: CERN management had the responsibility to stay within cost and, when extracosts were detected, CERN reacted coherently and responsibly;

•Starting from a big lab, already financed, no green grass, helps!

•A full globalised management (e.g. ITER) is more vulnerable to cost increase

•Cost-to-Completion crisis in 2001. CERN has profited from it to enforce real changes: a leaner programme, a well-focused Laboratory.

- •LHC final costs to CERN:
- Global collaboration for detectors worked out very well

	Personnel	Material	Total
Machine and Experimental Areas	1 150	3 685	4 835
Injectors	86	67	153
Detectors: construction, R&D	879	312	1 191
Detectors: test and pre-operation	-	181	181
LHC Computing	86	93	170
Grand Total	2 202	4 337	6 539

Table 1: Cost to CERN of LHC and associated detectors, in Millions CHF. Source: CERN/2840, May 27, 2009.

The result of more that 25 years of work (1984-2012) is an increadibly robust, upgradable complex, e.g. HL-LHC, that will produce physics for at least two other decades

7. What's next at High Energy?

 With the LHC / HL-HLC energy limitation, it is not likely that we can see all particles implied by SUSY or by Technicolor and find out which is the next step BEYOND the STANDARD THEORY SUSY PARTICLES ?

LHC / HL-LHC

TECHNI HADRONS

- but we may be able to see the tail of the dinosaur...do not leave any possibilty untested
- Can we really guess what New Physics at High Energy is?
- In the 80s we thought that the unnaturalness of ST could give the key to a complete theory of what is Beyond the Standard Theory (SUSY, GUT, then Gravity...)
- we may have guessed some real point.... compositeness, supersymmetry ...but there are so many things we do not fully understand (which kind of SUSY, dark matter, hierarchy, strong interactions) that the physics we will find there will be, most likely, *entirely new, strange and unexpected*.
- Only direct experiments will tell.

Higgs 2020, Roma

L. Maiani. The Higgs boson and more

October 28, 2020

Dao Valerio

Which Machine(s)?

Which machine?

huge effort to understand performance of various machines

complementarity among leptonic and hadronic colliders is the key

(biased) selection of closing messages

BackUp

+ Impressive developments of VBF H->bb analysis:

- adversarial training of NN
- "embedding" techniques for Z->bb predictions
- still a very intuitive analysis with convincing signal

+ Huge jump in sensitivity:

- from 0.5σ (36fb⁻¹) to ~3σ (130fb⁻¹)
- Xsection measurement for H p_T>200 GeV
- combination with VBF+y analysis (out at ICHEP)
- [intermezzo: phone studies on EFT in <u>VBF H+y</u> production]
- can help constraining Br_bb / Br_ZZ

		VBF H(→bb		★ No Dup?
VBF H→bb	Dataset	obs. (exp.) Significance	Paper Reference	results yet
ATLAS	Full Run 2	2.9σ(2.9σ)	CERN-EP-2020-195, CERN-EP-2020-179	from CMS
CMS	Run 1	2.2σ(0.8σ)	Phys. Rev. D 92 (2015) 032008	

Dao Valerio

ttH: H->bb

+ Full run2 ttHbb:

- analysis simplefication: fewer non ttbb regions
- a huge effort on MC: both stat. and available samples
- resolved + 'boosted' reconstruction: with priority to boosted
- first time targeting STXS interpretation

- Expected significance : 3.0σ
- Observed significance : 1.3σ
- Significance increase (1.6 —> 3.0) as sqrt(L) for a sys limited analysis!!!
- still tt+b(b) uncertainties are the leading limitation (mainly at low p_T)
- In highest p⊤ H measurement in ttH:
 - H->bb has the strength (or stat.) to put strong upper limit even when a precision measurement cannot be made

Dao Valerio

+ Non exhaustive ATLAS-CMS comparison:

- similar status for ttH H->yy: similar performance, presentations of results/interpretations (STXS bins, CP)
- in bb and ML CMS uses more aggressive ML techniques and seems to be "less sensitive" (or less caring) about modelling of key backgrounds (ttW and ttbb)
- ATLAS has first STXS results in bb final state (up to 400 GeV)
- + CMS targets tH in all the main final states (yy, bb, ML): strong constraints on t also from ggH and H->yy decay

DiHiggs: intro

A. Bethani

Full Run2 results from CMS:

- + HH->bbZZ->bb+4I: looking for bump in a single Higgs+2b analysis [presented at ICHEP]
- + HH->bbyy: new for the conference

E. Brost

New since the 36 fb⁻¹ combination:

- updated analysis techniques (HH \rightarrow bbWW 2l) - new production modes (VBF HH \rightarrow bbbb)

Dao Valerio

bbZZ(41) : analysis strategy

Backgrounds:

(i) Irreducible: determined from Monte Carlo

(a) single Higgs production: ggH, VBFH, HW, HZ, ttH, bbH
(b) QCD induced nonresonant production: qq→ZZ^{*}, gg → ZZ^{*}
(c) ttW, ttZ

(ii) Reducible: Z + X : where one or two leptons are fakes, mainly from heavy flavour decays, mis-reconstructed jets and converted γ

- \rightarrow determined from data by measuring probability of *fake* e, μ in control regions
- Total 9 BDT trainings: 3 separate years (2016, 17, 18) & 3 channels (4e, 4μ and $2e2\mu$)
- Signal extracted using shape analysis: maximum likelihood fit to merged BDT output distribution of all years and all channels with proper weightage.

stat. dominated

Dao Valerio

$bb\gamma\gamma$.List of input variables used for training

Common variables with ggHH analysis	VBF jet related variables							
1. Leading & subleading DeepJet score 2. $\cos(\theta^*_{CS}), \cos(\theta_{\gamma\gamma})$ and $\cos(\theta_{bb})$ - Helicity angles 3. $p_T^{\gamma\gamma}/M_{HH^{\gamma}} p_T^{bb}/M_{HH}$ 4. Leading & subleading photon ID MVA 5. $p_T^{\gamma/}m_{\gamma\gamma} \rightarrow$ lead and sublead photon 6. $p_T^{b/}m_{bb}^{b} \rightarrow$ lead and sublead b-jet 7. min $\Delta R_{\gamma b}$ and other $\Delta R_{\gamma b}$ 8. p_T^{HH} 9. MX 10. Leading and subleading photon resolution, σ_E/E 11. Diphoton mass resolution, $\sigma_m/m_{\gamma\gamma}$ 12. Leading ans subleading b-jet resolution σ_E/E 13. Di-bjet mass resolution, σ_m/m_{bb} 14. Median energy density in an event (ρ)	 Leading and subleading VBF jet p_T/ M_{jj}^{VBF} Leading and subleading VBF jet η Product of VBF jet η Difference of VBF jet η Quark Gluon Likelihood(QGL) of two VBF jets Minimum angular distance between one VBF jet and one photon & one VBF jet and one b-jet → min ΔR_{jγ} and min ΔR_{jb} Centrality variables between diphoton and di-bjet system with respect two the two VBF jets, C_{γγ}, C_{bb} 							
$C_{xx} = \exp\left[-\frac{4}{(\eta_{xx} - \frac{\eta_1 + \eta_2}{2})^2}\right]$ QGL: CMS DP -2016/070								

$$C_{xx} = \exp\left[-\frac{4}{(\eta_1 - \eta_2)^2} \left(\eta_{xx} - \frac{\eta_1 + \eta_2}{2}\right)^2\right]$$

where x= γ or b

22

HH: EFT BSM Benchmark [7]

- The different values of coupling parameters leads different kinematics and cross-sections
- In CMS HH analysis 12 benchmark points have been explored to get the EFT sensitivity
- Each benchmark points have been defined by a set of 5 coupling parameters
- The generator level m_{HH} distributions is hugely different in each benchmark scheme

Benchmark po	ints: 1	2	3	4	5	6	7	8	9	10	11	12	SM
KA	7.5	1.0	1.0	-3.5	1.0	2.4	5.0	15.0	1.0	10.0	2.4	15.0	1.0
Kt	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.5	1.0	1.0	1.0
C2	-1.0	0.5	-1.5	-3.0	0.0	0.0	0.0	0.0	1.0	-1.0	0.0	1.0	0.0
Cg	0.0	-0.8	0.0	0.0	0.8	0.2	0.2	-1.0	-0.6	0.0	1.0	0.0	0.0
C _{2g}	0.0	0.6	-0.8	0.0	-1.0	-0.2	-0.2	1.0	0.6	0.0	-1.0	0.0	0.0

Dao Valerio

Theory idea: "Higgs without a Higgs"

Any modifications of Higgs couplings induces E² growth in some process with longitudinal W,Z bosons!

larger effect when replacing Higgs with longitudinal V bosons

In STXS we are exploiting to kinematic dependence of anomalous couplings to increase the sensitivity

pp -> VVtj will represent a very striking signature in the detector

Hwh Program $\sim const$ $\sim E^2$ κ_t $|H|^2 Q \tilde{H} t_R$ \checkmark \checkmark κ_{λ} $|H|^6$ \checkmark \checkmark κ_{α} $|H|^2 G^a_{\mu\nu} G^{a\mu\nu}$ g κ_{G} $|H|^2 G^a_{\mu\nu} G^{a\mu\nu}$ gggg κ_{γ} $|H|^2 B_{\mu\nu} B^{\mu\nu}$ - κ_{χ} $|H|^2 B_{\mu\nu} B^{\mu\nu}$ - κ_{V} $|H|^2 B_{\mu\nu} H^a \mu$ - κ_{V} $|H|^2 \partial_{\mu} H^{\dagger} \partial^{\mu} H$ - κ_{V} $|H|^2 \partial_{\mu} H^{\dagger} \partial^{\mu} H$ -

(targetting low B final states)

Dao Valerio

Analyses overview: channels included and luminosity

			STXS 1.2			$(\sigma imes BR)$	κα	and MSSM
Exp	PMode	$H ightarrow \gamma \gamma$	$H \rightarrow ZZ^*$	$H ightarrow bar{b}$	$H \rightarrow WW^*$	$H \rightarrow \tau \tau$	$H o \mu \mu$	H ightarrow inv
	ggF	Full Run2	Full Run2	-	2015-16	2015-16	Full Run2	-
S	VBF	Full Run2	Full Run2	2015-16	2015-16	2015-16	Full Run2	Full Run2
ΓĒ Ι	WH	Full Run2	Full Run2	Full Run2	-	-	Eull Pup2	-
Ē	ZH	Full Run2	Full Run2	Full Run2) -	-		-
	tŦH	Full Run2	Full Run2	2015-16	2015-16	2015-16	Full Run2	-
	tH	Full Run2	-	-	-	-	-	-
	ggF	2015-17	Full Run2	2015-16	2015-16	2015-17	2015-16	-
	VBF	2015-17	Full Run2	-	2015-16	2015-17	2015-16	-
NS	WH	-	Eull Dup?	2015-17	2015-16	2015 17	-	-
บ็	ZH	-		2015-17	2015-16	2015-17	-	-
	tŦH	2015-17	Full Run2	2015-17	-	2015-16	-	-
	tH	-	-	-	-	-	-	-
							μ and κ	

ATLAS does not use all the analysis in each results

- Only $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^*$ and $VH(b\bar{b})$ have STXS Stage 1.2 capabilities
- ► $H \rightarrow \mu\mu$ does not have STXS implemented \Rightarrow not used for ($\sigma \times BR$)
- ▶ $H \rightarrow inv$ used only when BSM constraints are needed $\Rightarrow \mu$ and κ
- \blacksquare CMS uses all the available analyses in its signal strengths and κ result

D. Mungo (U. of Milan & INFN MI)

Higgs combination: μ , κ , STXS, MSSM

Dao Valerio

S. Mukherjee

CERN

bbyy: 1D Likelihood scans

 \rightarrow ttH process considered for better constraint on κ_{λ} and κ_{t}

 \rightarrow ttH categories are mutually exclusive to the all HH categories [4]

Dao Valerio

NEW

Exotics Higgs decays : wishlist

J. Alimena et al., 1903.04497, J.Phys.G 47 (2020)

HIGGS + LONG-LIVED

- Where there exist major gaps/opportunities:
 - Leptonically decaying LLPs with low pT, different flavour combinations
 - Hadronically decaying LLPs with proper lifetimes < 0.1 m
 - (Hadronically decaying) taus from LLPs
 - High multiplicities (6-8 final-state particles!), including Majorana neutrinos (3-body, semi-leptonic decays)
 - Compressed scenarios (e.g., inelastic dark matter)
 - Delayed photons (little to no MET), photon jets
 - Emerging jets & dark showers

PROMPT DECAYS

- Where are there gaps?
 - Partially visible signatures, like $h \rightarrow b\bar{b} + E_T$ D. Curtin *et al.*, 1312.4992, PRD 90 (2014)

 $\operatorname{Br}(h$

• High multiplicity decays like $h \to ss \to A'A'A'A'$, $h \to NN \to 6f$

e.g., E. Izaguirre, D. Stolarski, 1805.12136, PRL 121 (2018)

• Interesting/more exotic flavour violation like $h \rightarrow e^+ e^+ \mu^- \mu^-$ J. Evans, P. Tanedo, M. Zakeri, 1910.07533, JHEP 01 (2020)

12

HIGGS + LONG-LIVED

• Higgs also presents trigger opportunities!

- Higgs produced in association with VBF jets or W/Z: can be used to trigger on otherwise difficult signals!
- So far, this approach only seems to have been used in one published analysis looking for $h\to ZA'$

ATLAS, 1811.02542, PRL 122 (2019)

Dao Valerio

 Can low-mass tau triggers for Higgs studies be useful for lowmass, narrow displaced hadronically decaying LLPs?

Combinations

+ Very difficult to compare combinations apple-to-apples:

performed at different stages with available analyses

CMS combination performed early this year(*)

lumi	ZZ	уу	bb	ww	tautau	μμ
ggF	140	80 /140	40 /140	40 /140	80 /140	140
VBF	140	80 /140		40	80 /140	140
VH	140	80 /140	80	40	80 /140	140
ttH	80	80 /140	40/ 80	80 /	/140	140

ATLAS combination performed for ICHEP

lumi	ZZ	уу	bb	ww	tautau	μμ
ggF	140	140	/ 80	40	40	140
VBF	140	140	40/ 140	40/ 140	40	140
VH	140	140	140	/ 40	40	140
ttH	140	140	40/ 140	40	/ 80	140

ATLAS combination is more complete having come out later.

- As more individual analyses are becoming available, it will be difficult to argue that the combination is our best knowledge (for some specific quantities):
 - * aka "how often should we update combinations?"

(*) updated to include H->mumu in its own paper