
 

 

BusyBox User Guide 
 

The purpose of the BusyBox is to let the Central Trigger Processor (CTP) know when the FEE’s buffers are full by 

asserting a busy signal which prevents further issuing of triggers. The BusyBox and D-RORCs receive a unique 

event ID from the FEE after an event. After a valid trigger sequence ends the BusyBox will ask the D-RORCs if 

they have received the same event ID as the BusyBox did. If they do not reply with the same ID it means data 

has not been shipped from the Fee to the D-RORC, hence, the buffer in the Fee still holds event data. 

The BusyBoxes are located in the DAQ counting rom and is a FPGA based system developed at the University of 

Bergen. The first of three development phases was done by Anders Rossebø. He designed the BusyBox hardware 

including the 19” rack case. Then Magne Munkejord developed the firmware and PhD student Johan Alme 

contributed with the Trigger Receiver Module to make the firmware complete. And finally a full test, integration 

and commissioning was done by Rikard Bølgen and Magne Munkejord. 

This User Guide is about the whole BusyBox system. The intention is to give newcomers to the system an 

intuitive understanding without going too much in detail.  

The first part of this user manual is an overview of the BusyBox. Hardware, Firmware, DCS board and 

communication systems will be discussed. The second part is how to interact with everything. How to program 

and read registers in the FPGA, to emulate triggers from an emulator. 

For more latest firmware relase and latest discussion about the BusyBox, check out the wiki at: 

https://wikihost.uib.no/ift/index.php/Busy_Box_and_related 
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2 Introduction 

The purpose of this document is to give users of the BusyBox an understanding of what it is, by discussing the 

hardware, firmware and software which is the key components of the ALICE BusyBox system. 

The scope of this technical paper and user guide will be to collect all the information necessary to understand, 

use and modify the BusyBox.  

2.1 Document History 

Revision 

number 

Revision date Summary of changes Author 

1.0 09.12.08 N/A Rikard Bølgen 

1.1 08.12.09 • Merged into one file.  

• Added chapter Feil! Fant ikke 

referansekilden. Feil! Fant ikke 

referansekilden.. Changed document 

style.  

• Updated some interface tables and 

figures to latest firmware revision. 

Magne Munkejord 

1.2 14.09 2010 • Updated first page 

• Edited layout 

Kjetil Ullaland 

Table 2-1: Revision history. 

 

Package Version 

Firmware BusyBox 41 

Trigger Receiver Module 1.5 

DCS card Version 2.84 BUSYBOX 

Table 2-2: Firmware versions corresponding to this guide. 

2.2 Abstract     

ALICE is one of four large detectors situated at the collision points in the LHC at CERN. The BusyBox utilizes the 

TPC, PHOS, FMD and EMCal sub-detectors and it is an FPGA based device.  

It will verify the transfer of event data from the sub-detectors Front End Electronics (FEE) to the Data Acquisition 

system (DAQ). The BusyBox also keeps track of free buffers in the FEE. If the buffers are full or a collision is 

detected the BusyBox will flag a busy signal to a Central Trigger Processor (CTP), which halts further triggers 

from being issued. 

Interaction with the BusyBox is done through the DCS board, either via Ethernet or UART. 
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3 System Overview 

The BusyBox is a part of the data acquisition in four of the ALICE sub-detectors, namely: TPC, PHOS, FMD and 

EMCal. The latter is currently in development.  

There are some minor differences between the BusyBoxes for each sub-detector because of the different 

numbers of D-RORCs they use. 

Detector D-RORCS Panel height 

TPC 216 5 units 

PHOS 20 1 unit 

FMD 24 1 unit 

EMCal 3 1 unit 

Table 3-1: Number of D-RORCs per detector 

Data acquisition in ALICE is trigger based and is controlled by a Central Trigger Processor (CTP). The CTP 

distributes a trigger sequence starting with a L0 trigger when it senses a collision. Then, depending on the 

quality of the collision a L1 followed by an L2a or L2r trigger is issued by the CTP via the LTU.  

The TPC FEE starts buffering data upon receiving a L1 trigger and PHOS a L0 trigger. The FEE on the four sub-

detectors can buffer 4 or 8 events depending on number of samples configured.  

So, the BB has two main tasks, keep track of available buffers and maintain a past-future protection. If the 

buffers are full or a L1 trigger is issued the BusyBox asserts a busy signal to the CTP, which will halt further 

triggers. The busy is then removed if these conditions are no longer true. 

The BusyBox has no direct communication with the FEE and keeps track of available buffers by communicating 

with the D-RORCs. The Trigger System sends triggers to the BusyBox and the FEE. Figure 3-1 below illustrates 

the BusyBox place in the readout chain. 



  P a g e  | 5 

 

 

   

 

Figure 3-2: Illustration of the data flow for the BusyBox system. The BusyBox and D-RORCs are placed in the counting 

rooms above the experiment hall. 
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4 BusyBox Hardware 

This chapter discusses the hardware and some key components. 

 

Figure 4-1 BusyBox PCB 
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# Type Description 

1 LED indicators Indicates numbers of buffers used 

2a LEMO contact LVDS busy signal from FPGA 1 

2b LEME contact LVDS busy signal from FPGA 1 

3 LED indicators  

4 RJ-45 contact RJ-45 contacts for D-RORCs 

5 Mezzaine connectors Mezzaine card holders to additional RJ-45 connectors 

6 Resistors FPGA1 configuration resistors. Sets the configuration mode to 8bit 

SelectMAP slave. 

7   

8a FPGA 1 Xilinx Virtex IV  

8b FPGA 2 Xilinx Virtex IV (TPC only) 

9  Connector for digital analyzer. Also serves as inter connect between 

FPGAs 

10 DCS board Connectors for DCS board 

11 Power supply connector Connector for external power supply. Power supply: 5V, 12 A 

12  SelectMAP resistor for pull-ups/pulldowns and thevenin termination of 

clock (CCLK). 

13 Pin connectors GND, 1.2V, 2.5V and 3.3V output 

14  FPGA2 configuration resistors. Sets the configuration mode to 8bit 

SelectMAP slave. 

15abc Voltage regulator PTH05000W voltage regulators from Texas Instruments 

16 Test point JTAG interface Standard JTAG access port. Used for configuration and debug. 

17 Test point SelectMap 

interface 

BUG: SelectMAP CCLK must be cut at certain point on PCB to prevent 

ringing.  

Table 4-1: List of components on the PCB. 

4.1 Xilinx Virtex IV FPGA 

The BusyBox use the Virtex-4 LX-40 with the ff1148 package from Xilinx. There are 640 user programmable I/O 

pins that support LVDS 2.5 standard used to communicate with the D-RORCs. The Virtex-4 can run on clock 

speeds up to 500 MHz, store 18 Kbits in 96 BRAM modules and has DCM to provide flexible clocking and 

synchronization. 

A “Multiple device SelectMap bus” is used to program the FPGAs, since two FPGAs can be used with different 

firmware. Linux kernel device drivers have been developed so that the Linux OS running on the DCS board can 

redirect the programming bit file to the FPGA.  

The BusyBox can also be programmed via JTAG interface on the PCB. When one FPGA is used a jumper on the 

PCB needs to be applied to bypass the missing JTAG chain. 

4.2 DCS 

The DCS board was originally designed for the TRD and TPC sub-detectors, but because it was very versatile it 

has been adapted for the BusyBox and other instrumenst in ALICE experiment. It is running a lightweight version 

of Linux and implements TCP/IP network protocol. The DCS board has a TTCrx chip to receive the LHC clock, first 

level trigger accept and trigger messages. Each card runs a FEE server that interfaces with the system it is 

connected to. Thus, it makes it possible to program the FPGA(s) and read/write registers remotely from the 

control room at Point 2. 
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5 BusyBox Firmware 

This chapter discusses the functionality of the firmware and gives a description of each module with sub-

modules. The firmware modules are described with text, pictures, entities and port details. 

5.1 Introduction 

 

Figure 5-1: Main BusyBox firmware modules. 

 

The firmware controls the BusyBox and executes its designed purpose based on inputs from three sources: 

TTCrx, BusyBox DCS card and the D-RORCs. The above figure shows the main firmware modules of the BusyBox 

and will be discussed in more detail. As mentioned before the BusyBox has two main functions: assert the busy 

signal if FEE buffers are full or when a L1 trigger has been issued by the CTP.  

5.1.1 An intuitive explanation of how the BusyBox firmware works 

It all starts with a collision of hadrons in the LHCs ALICE detector. The CTP detects this collision and notifies the 

LTU, which issues a L0 trigger to all four BusyBoxes via its optical fiber network. The L0 trigger is the start of a 

sequence of triggers and ends with either an L2a or L2r trigger. 

The LTU broadcasts the BC, Channel A and Channel B to the BusyBox through its fiber network and is converted 

by the TTCrx chip, on the DCS card, to electrical signals. Then the information is decoded by the trigger receiver 

module. 
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Not all of the decoded messages are useful for the BusyBox. Hence, the trigger receiver module only extracts the 

bunch count, event ID and triggers. 

The triggers are forwarded to the busy controller module, which asserts the busy when a L1 trigger is received. 

The bunch count and event ID is used to assure that all D-RORCs have received data from an event and with that 

information in hand the BusyBox can keep track of the FEE buffers. If all D-RORCs have received event data, this 

will imply that the event data have been read out from the FEE buffers. It is the busy controller module that 

keeps track of the FEE buffers. FEE buffers can hold 4 or 8 events and starts buffering data on a L0 trigger (TPC 

starts on a L1). So if there is a L0 trigger 1 buffer is occupied, and if all the D-RORCs have responded with the 

same event ID and bunch count the EventID is OK (EIDOK). Then the event data have been read out and the 

buffer is free. 

A control and status register can as the name implies, control and check the status of registers in the BusyBox. 

Registers in the trigger receiver module and stored data from the receiver module in the RX memory module can 

also be accessed. All this is done via the FeeServer on the DCS card mounted on the BusyBox PCB. 

5.1.2 VHDL Entity Hierarchy 

• busybox_fpga1_solo || busybox_fpga1 || busybox_fpga2 

o busylogic_top 

o ctrl_regs (Control and Status Registers) 

o dcs_arbit_addr_dec (DCS Bus Arbiter and Address Decoder) 

o transmitter_module(Transmitter Module) 

� serial_encoder 

o multi_channel_receiver (Multi Channel Receiver Module) 

� single_channel_receiver 

• serial_rx 

� branch_controller 

� backbone_controller 

o rx_mem_filter 

o receiver_memory_module (RX Memory Module) 

� rx_bram 

o event_validator_top (Event ID Verification Module) 

� drorc_inbox_buffer 

� FIFOsync108x512 

� daq_header_extractor 

� eventid_control 

� eventid_processor 

o trigger_receiver_busylogic (Trigger Receiver Module) 

o busy_controller (Busy Controller) 

 

The firmware can be implemented by using one of three different top-level wrappers. The different top-

level wrappers are necessary to adapt the firmware to fit different hardware configurations. If two 

FPGAs are present then they must work in parallel and be coordinated. If only one FPGA is present it 

must operate in standalone mode. 

 

Figure 5-2 shows a graphical representation of the same information as above. In addition the IO 

buffers that are instantiated in the top-level wrappers are included in the figure. 
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Figure 5-2: Module instantiation hierarchy. 

5.2 BusyBox top-level wrappers 

The BusyBox PCB can be fitted with one or two FPGAs depending on the number of channels required. The 

different hardware configurations require slightly modified versions of the firmware at the toplevel HDL source. 

A BUSY signal from FPGA2 is combined in FPGA1 among other things. There are three different toplevel HDL 

files: busybox_fpga1.vhd, busybox_fpga2 and busybox_fpga1_solo. There three are different usage scenarios: 

• For BusyBoxes with 2 FPGAs mounted, FPGA1 should be programmed with firmware based on 

busybox_fpga1 and FPGA with busybox_fpga2.  

• If the second FPGA is not going to be used then FPGA1 can be programmed with busybox_fpga1_solo, but 

FPGA2 must then be programmed with a dummy configuration for the programming operation to finish 

without errors. 

• For BusyBoxes with only one FPGA firmware based on busybox_fpga1_solo must be used. 

 

At the toplevel HDL wrappers it is possible to specify the number of channels to be implemented. Each channel is 

connected to the rest of the design through a branch. One branch controller can support up to 16 channels. 

There must be enough branches to connect the number of channels specified or the implementation will fail. 
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5.2.1 Entity BusyBox FPGA Modules 

Acts as a wrapper for each version of the three firmware versions: busybox_fpga1.vhd, busybox_fpga2.vhd and 

busybox_fpga1_solo.vhd. These wrappers instantiates the BusyBox top module with the required generic 

parameters and extra logic. The wrapper also adds and configures the necessary Virtex-4 IO buffers and Digital 

Clock Manager (DCM) around the busylogic_top module.  

clock_lvds_P serial_tx_p

clock_lvds_N serial_tx_n

areset_n    dcs_data

serialB_in   dcs_ack_n

L1Trig_P      BUSY_1

L1Trig_N      BUSY_2

serial_rx_p  leds

serial_rx_n

dcs_adr

dcs_strobe_n

dcs_RnW

intercon_busy

TTXrx_ready

busybox_fpga1

busybox_fpga2

busybox_fpga1_solo

clock_lvds_P serial_tx_p

clock_lvds_N serial_tx_n

areset_n    dcs_data

serialB_in   dcs_ack_n

L1Trig_P      BUSY_1

L1Trig_N      BUSY_2

serial_rx_p  leds

serial_rx_n

dcs_adr

dcs_strobe_n

dcs_RnW

TTXrx_ready

clock_lvds_P serial_tx_p

clock_lvds_N serial_tx_n

areset_n    dcs_data

serialB_in   dcs_ack_n

L1Trig_P     intercon_busy

L1Trig_N

serial_rx_p

serial_rx_n

dcs_adr

dcs_strobe_n

dcs_RnW

TTXrx_ready

 

Figure 5-3: Entity for BusyBox FPGA modules. 

• BUSY1 and BUSY2 outputs only exist on FPGA1. These outputs are the same logical signal. 



12 | P a g e  B u s y B o x  U s e r  G u i d e   

 

• Busybox_fpga1 wrapper takes busy input (intercon_busy) from FPGA2 and combines it with its own 

BUSY output through an OR gate. 

Generic name Type Legal range Default value Description 

num_of_channels natural 0 to 119 119 Specifies the number of channels (-1) 

that will be instantiated at compile-

time. 

num_of_branches natural 1 to 8 8 Specifies number of branches at 

compile-time. Each branch can connect 

16 serial receiver channels. 

Table 5-1: Generics at the HDL top-level wrappers. 

BusyBox wrapper num_of_channels num_of_branches 

busybox_fpga1 119 8 

busybox_fpga2 96 6 

busybox_fpga1_solo 39 3 

Table 5-2: Default values for generic parameters for BusyBox wrappers. 

Port Name Direction # Bit Description 

clock_lvds_P Input 1 std_logic; 

clock_lvds_N Input 1 std_logic; 

areset_n Input 1 std_logic; 

serialB_in Input 1 std_logic; 

L1Trig_P Input 1 std_logic; 

L1Trig_N Input 1 std_logic; 

serial_rx_p Input 120
1
 std_logic_vector(0 to num_of_channels); 

serial_rx_n Input 120 std_logic_vector(0 to num_of_channels); 

dcs_adr Input 16 std_logic_vector(15 downto 0); 

dcs_strobe_n Input 1 std_logic 

dcs_RnW Input 1 std_logic; 

intercom_busy Input/Output
2
 1 std_logic; 

serial_tx_p Output 1 std_logic_vector(0 to num_of_channels) 

serial_tx_n Output 1 std_logic_vector(0 to num_of_channels) 

dcs_data Bidirectional 16 std_logic_vector(15 downto 0) 

dcs_ack_n Output 1 std_logic; 

BUSY_1 Output
3
 1 std_logic; 

BUSY_2 Output
2
 1 std_logic; 

leds Output
2
 13 std_logic_vector(1 to 13); 

Table 5-3: I/O details for BusyBox FPGA Modules. 

5.3 Module digital_clock_manager 

This core has been generated by the Xilinx tool Architect Wizard available through the CoreGen GUI. It a single 

DCM configured to deskew and output two clock signals generated from the incoming clock. The incoming clock 

from the DCS board is approximately 40 MHz. The DCM multiplies this clock signal by 5 to generate a 200 MHz 

output used in the design. The 40MHz and 200 MHz are routed to global clock buffers that drive global clock 

nets to distribute the clock signals around the chips. 

The DCM is setup in a system synchronous configuration. This means that the clock is fed back to the DCM after 

it has gone through the clock distribution network. The DCM will regulate the phase of its output clocks so that 

                                                                 
1
 Number of channels implemented is configurable. 

2
 This is an input on FPGA1 and an output on FPGA1. It does not exist in the busybox_fpga1_solo wrapper. 

3
 Only exists on FPGA1. 
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the feedback clock’s rising edge and incoming’s clock rising edge are aligned. This is done to compensate for the 

delay of the clock distribution network in the chip. This configuration ensures that the chip/FPGA is clocked 

synchronously with the rest of the system (other synchronous elements). 

During startup of the FPGA (right after the configuration data has been loaded) the internal circuits of the DCM 

will try to lock on the incoming clock signal. This is an operation that might take several thousand clock cycles to 

complete and may fail if the incoming clock contains glitches and/or sporadic behavior. The clocks supplied by 

the DCM are not reliable until the DCM has acquired lock. A dedicated output signal named “lock” from the 

DCM indicates when lock has been acquired. This signal is forwarded to the reset logic which will hold the 

design in reset until the lock signal is deasserted. 

The wizard that generates the DCM core does not support enabling of the DIFF_TERM attribute of the 

differential global clock input buffer (IBUFGDS). Therefore the clock input buffer is disabled in the wizard and 

instead the input buffer is instantiated in the BusyBox top-level wrapper files where the DIFF_TERM attribute is 

enabled. This is essential for the design to operate reliable, otherwise the DCM may not lock on the incoming 

reference clock and the internal clock signals will be full of glitches and spurious behavior. 

NOTE: The differential termination could/can also be enabled by constraints in the User Constraints File (UCF). 

 

Figure 5-4: Entity for digital_clock_manager 
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5.4 Busylogic_top Module 

The busylogic_top module is the common top level for all three firmware versions. It has a structural 

architecture where all main modules are instantiated and connected. 

 

5.4.1 Entity for busylogic_top Module 

 

Figure 5-5: Entity for BusyBox top module. 

 

Port Name Direction # Bit Description 

clk200 Input 1 std_logic; 

clk40 Input 1 std_logic; 

areset Input 1 std_logic; 

serialB_in Input 1 std_logic; 

L1Trig_in Input 1 std_logic; 

channels_in Input 120 std_logic_vector(0 to num_of_channels); 

dcs_addr Input 16 std_logic_vector(15 downto 0); 

dcs_strobe_n Input 1 std_logic; 

dcs_RnW Input 1 std_logic; 

ttcrx_rdy Input 1 std_logic; 

buffers_used Output 4 std_logic_vector(3 downto 0); 

channels_out Output 120 std_logic_vector(0 to num_of._channels); 

busy_out Output 1 std_logic; 

dcs_ack_n Output 1 std_logic; 

dcs_data In/Out 16 std_logic_vector(15 downto 0); 

Table 5-4:I/O details for BusyBox Top Module. 

 

5.5 Reset_logic module 

This module implements some simple reset logic to generate proper reset signals to the design. The reset signals 

will be asserted asynchronously whenever the DCM’s locked signal is low. In other words, the design will not 

activate before the DCM locks on the incoming clock. After the DCM achieves lock it will assert the lock signal. 

The reset logic implements a shift register that is used to delay a synchronous release of the reset signals. 

Reset signals for both clock domains are generated. This is done to let the synthesis tools employ “register 

duplication” to reduce fanout and routing delay of the resets in both clock domains.  
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Generic Name Type Comment 

g_rst_length natural Sets the time in number of clock (clk40) cycles before the resets are released. 

Table 5-5: Tabel of generic parameters for reset_logic module. 

Port Name Direction Type Comment 

clk200 in std_logic 200 MHz clock input 

clk40 in std_logic 40 MHz clock input 

clk_lock in std_logic acts active low asynchronous reset 

rst200 out std_logic synchronous reset for the 200 MHz clock domain 

rst40 out std_logic synchronous reset for the 40 MHz clock domain 

Table 5-6: IO table for reset_logic module. 

 

5.6 DCS Bus Arbiter and Address Decoder 

The DCS bus arbiter and address decoder module is an asynchronous 16 bit data/address handshake protocol 

for communication between the FPGA and DCS board. This protocol is used to read and write registers in the 

BusyBox firmware. The MSB of the 16 bits DCS bus address selects which FPGA to communicate with. Then each 

module can be accessed with the next three bits and the remaining bits are used to target specific sub-module 

registers. 

FPGA address Module address Sub module address 

15 14 – 12 11 – 0  

Table 5-7: Bit-mapping of DCS bus address. 

 

5.6.1 Entity DCS bus arbiter and address decoder 

 

Figure 5-6: Entity for DCS Bus Arbiter and Address Decoder. 

Generic name Type Comment 

c_fpga_id std_logic This bit sets the slave FPGA MSB address. ‘0’ for FPGA1 or ‘1’ for FPGA2. 

Table 5-8: Generic parameters for dcs_arbit_addr_dec 

Port Name Direction # Bit Description 

clk40 Input 1 std_logic; the clk40 frequency is 40.08 MHz 

dcs_strobe_n Input 1 std_logic; the asynchronous handshake is done with STROBE_N 

from the DCS board. 

dcs_RnW Input 1 std_logic; ‘1’ read and ‘0’ write.  

dcs_addr Input 16 std_logic_vector(15 downto 0); address module and submodule 

register.  

dcs_data Inout 16 std_logic_vector(15 downto 0); bi-directional data line. 

dcs_ack_n Output 1 std_logic; the asynchronous handshake is done with ACK_N from 

the busy board. 
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module_data_array Output 7 std_logic_vector(0 to num_of_modules-1); communication with 

modules. 

module_en_array Output 7 std_logic_vector(0 to num_of_modules-1); communication with 

modules. 

module_address Output 12 std_logic_vector(11 downto 0); communication with modules. 

module_RnW Output 1 std_logic; communication with modules. 

Table 5-9:I/O details for DCS Bus Arbiter and Address Decoder. 

 

5.7 Receiver Module 

Serial data from the D-RORCs are handled by the receiver module and up to 120 single channels can be 

implemented in one FPGA. 

Detector # Channels on FPGA 1  # Channels on FPGA 2 

TPC 120 96 

PHOS 20 N/A 

FMD 24 N/A 

EMCal 3 N/A 

Table 5-10: Numbers of channels per detector pr FPGA. 

In order to implement error tolerance, the 48 bit word from the D-RORC is sampled in a 16 bit data frame. A 

state machine in the Single Channel Receiver module reads out the data word, one word after another, when 

the serial decoder flags that data is ready to be sent. A countdown timer in the state machine discards the data 

if the strict timing between data readout is compromised. In that case the next word is then considered the first 

in the readout sequence of three words. 

If all three words have been read out successfully, and no parity errors and timeouts were found, the state 

machine will send the data to a multiplexer tree. 

Up to sixteen Single Channel Receivers can be connected to a Branch Controller module. The Branch Controller 

buffers data from the Single Channel Receivers and stops further buffering until data have been read out by the 

Backbone Controller. The Backbone Controller may have up to eight Branch Controllers and the concept is 

illustrated in 



  P a g e  | 17 

 

.

 

Figure 5-7: Architecture of multi channel receiver. 

 

5.7.1 Receiver Module VHDL Entity Hierarchy 

1) Multi Channel Receiver 
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• Single Channel Receiver 

∗ Serial Decoder 

• Branch Controller 

• Backbone Controller 

 

5.7.2 Entity Multi Channel Receiver Module 

The Multi Channel Receiver module has structural architecture that instantiates and connects the correct 

numbers of single channel receivers and branch controllers. The single channel serial receivers are connected to 

branch controllers and the branch controllers are then connected to the backbone controller. See Figure 5-8. The 

number of channels and number of branches to instantiate is defined through generics. 

 

Figure 5-8: Entity for Channel Receiver Module. 

 

Port Name Direction # Bit Description 

clk200 Input 1 std_logic; the clk200 frequency is 200 MHz. 

areset Input 1 std_logic; asynchronous reset 

serial_channel_in Input 120 std_logic_vector(0 to num_of_channels); LVDS serial channels 

from D-RORCs  

CHEN_vector Input 120 std_logic_vector(0 to num_of_channels); CHEN vector is a 

register in the Control and Status Register module , one bit set 

or disable channels.  

data_out Output 48 std_logic_vector(47 downto 0); 48 bit data from D-RORCs 

channel_out Output 8 std_logic_vector(7 downto 0); toggles the data from the 

different channels to be outputted     

write_req Output 1 std_logic; ‘1’ D-RORC data ready to send 

Table 5-11: I/O details for Channel receiver Module. 

5.7.3 Entity Single Channel Receiver 

A state machine checks for parity errors and make sure that the 16 bit words from the serial decoder is within 

the allowed time limit. Three 16 bit words are concatenated to a 48 bit message and stored temporary in three 

different registers. If the registers are not read out fast enough they will be overwritten. 

 

Figure 5-9: Entity for Single Channel Receiver. 
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Port Name Direction # Bit Description 

clk200 Input  1 std_logic; the clk200 frequency is 200 MHz. 

rst200 Input 1 std_logic; synchronous rest. 

enable Input 1 std_logic;  

serial_in Input 1 std_logic; data bit from serial decoder. 

data_out Output 48 std_logic_vector(47 downto 0); 48 bit data from D-RORC 

read_ack Input 1 std_logic;  

data_av Output 1 std_logic;  

Table 5-12: I/O details for Single Channel Receiver. 
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5.7.4 Entity Serial Decoder 

 

Figure 5-10: Entity for Serial Decoder. 

 

Port Name Direction # Bit Description 

clk200 Input 1 std_logic; the clk200 frequency is 200 MHz. 

rst200 Input 1 std_logic; synchronous reset  

enable Input 1 std_logic; 

serial_in Input 1 std_logic; serial signal from D-RORC 

parity_error Output 1 std_logic;  

data_av Output 1 std_logic; 

data_out Output 16 std_logic_vector(15 downto 0); data from D-RORC 

Table 5-13: I/O details for Serial Decoder. 

 

If the Serial Decoder is enabled it listens to the transmission line for serial data. Each data word is packed into a 

frame and encoded on the serial signal as illustrated in 

Figure 5-11. When the line is idle it pulled to logic 1. A frame starts with two start bits to create 1-0 transition. 

The decoder looks for this transition to lock on to the data frame. Each bit is sampled 5 times. This is necessary 

to detect the bit phase of the incoming serial bit stream. Once the 1-0 transition of the start bits are found a 

state machine in the decoder triggers and start capturing data. The state machine picks the sample that is 

believed to be the middle of each bit by counting samples at the local clock rate. After 16 data bits have been 

sampled, a parity bit and a stop bit are sampled. Both must have the correct logic value before the frame is 

accepted and data forwarded. The parity bit is a even parity generated by XOR’ing the data bits as they are 

received. The stop bit is always logic 0. 

Figure 5-11: Encoding of serial data on transmission line. 

 

5.7.5 Entity Branch Controller 

The Branch Controller reads data from up to 16 Single Channels Receiver’s and feed the data to the backbone 

controller. It scans the receivers for data available flag and copies the data to a buffer when the flag is raised. 

The branch controller will hold until the Backbone Controller has verified that it has read the message. 
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Figure 5-12: Entity for Branch Controller. 

 

Port Name Direction # Bit Description 

clk200 Input 1 std_logic; the clk200 frequency is 200 MHz. 

Rst200 Input 1 std_logic; synchronous reset 

data_in_array Input 16 receiver_busy_array(0 to 15); 

data_av_vector Input 16 std_logic_vector(0 to 15); ‘1’ when data is available 

read_ack Input 1 std_logic; from backbone controller 

read_ack_vector Output 16 std_logic_vector(0 to 15); 

data_out Output 48 std_logic_vector(47 downto 0); 48 bit data 

count_out Output 4 std_logic_vector(3 downto 0); counter to keep track of serial 

channel being scanned 

data_av Output 1 std_logic; ‘1’ when data from serial receiver is ready to be sent 

Table 5-14: I/O details for Branch Controller. 

5.7.6 Entity Backbone Controller 

The Backbone Controller reads data from up to 8 Branch Controller’s and writes the data to the RX Memory 

module and the D-RORC inbox buffer in the Event Validator Top module. 

 

Figure 5-13: Entity for Backbone Controller. 

 

Port Name Direction # Bit Description 

clk200 Input 1 std_logic; the clk200 frequency is 200 MHz. 

rst200 Input 1 std_logic; synchronous reset 

data_in_array Input 8 receiver_bus_array(0 to 7); work.busylogic_pkg 

count_in_array Input 8 count_array(0 to 7); work.busylogic_pkg 

read_ack_vector Output 8 std_logic_vector(0 to 7); 

data_out Output 48 std_logic_vector(47 downto 0); 48 bit data 

count_out Output 8 std_logic_vector(7 downto 0); 

data_av_vector Output 8 std_logic_vector(0 to 7); 

write_req Output 1 std_logic; 

Table 5-15: I/O details for Backbone Controller. 

5.8 Transmitter Module 
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The transmitter module transmits serial data to the D-RORCs and consists of  a controller, a serial decoder and a 

masking vector. A message register and a channel register are available for the DCS bus module and Event ID 

Verification module. Data from the message register will be loaded into the serial encoder and the masking 

vector will be created based on the channel number in the channel register. The masking vector lets the Event ID 

Verification module and DCS bus module select which channels to enable or disable. The controller handles 

requests from the Event ID Verification module and DCS bus module to prevent communication conflicts.  

A state machine in the serial encoder module sends a 16 bit word to the PISO (Parallell In –Serial Out) module by 

request from the controller.  

 

 

Figure 5-14: Transmitter system. From [Magne] 

The transmitter module will request eventIDs from the D-RORCs. The request is a 16 bit word and is sent to all 

D-RORCs. 

 

15 – 12 11 – 8 7 - 0 

Command type Request ID Unused 

Table 5-16: Bit map for Trigger module request. 

    

Command type Bit Code Description 
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Request Event ID 0100 Request an Event ID from the D-RORC. 

Resend last message 0101 Command the D-RORC to re-transmit the last message sent. 

Force pop Event ID 0110 Command the D-RORC to pop one Event ID from its local queue. 

Force Request ID 0111 Command the D-RORC to store the attached Request ID. 

Table 5-17: Request commands. 

5.8.1 Transmitter module VHDL Entity Hierarchy 

• Transmitter module 

o Serial encoder 

 

The Transmitter module is initiating the serial encoder and setting the masking vector. 

5.8.2 Entity Transmitter module 

The Transmitter module is initiating the serial encoder and setting the masking vector. A 16 bit register can be 

accessed from the DCS bus as shown in figure 5-15. The register contains a message register and a channel 

register. 

 

temp_dcs_data 

dcs_tx_channel dcs_tx_data 

15 – 8 7 - 0 

Table 5-18: Bit map for DCS data. 

The channel register selects which channel to be masked and unmasked the other channels. If the value in the 

channels register does not specify a specific channel, all channels are unmasked and the message is 

broadcasted to all channels. A flag is raised in to indicate that data are available to be written from the DCS 

board to the message register. A state machine, see figure 5-16, in the controller sees the flag and starts 

loading data into the serial encoder and sets the masking vector. The flag is removed and the procedure is 

executed. 

The Event ID module sends a request to the transmitter module and the request is granted if there is no pending 

flag from the DCS bus. The controller loads data and the masking vector from the EventID module. 

Messages are Hamming coded in the Transmitter module in an 8:4 code applied to the 4 bit command word and 

request ID. The receiver (D-RORC) will discard data if it finds any errors. The Hamming function is in the 

busylogic_pkg. 
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Bit 

position 

8 

P4 

7 

D4 

6 

D3 

5 

D2 

4 

P3 

3 

D1 

2 

P2 

1 

P1 

P1  X  X  X  P1 

P2  X X   X P2  

P3  X X X P3    

P4 P4 X X X X X X X 

Table 5-19: Hamming code table 

 

Figure 5-17: State diagram for TX controller 

 

 

Figure 5-18: Entity for Transmitter Module. 
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Port Name Direction # Bit Description 

rst40 Input 1 std_logic; synchronous reset 

clk200 Input 1 std_logic; the clk200 frequency is 200 MHz 

clk40 Input 1 std_logic; the clk40 frequency is 40.08 MHz 

fw_req Input 1 std_logic; 

fw_data Input 8 std_logic_vector(7 downto 0); 

fw_mask Input 120 std_logic_vector(0 to num_of_channels); 

module_en Input 1 std_logic; 

module_rnw Input 1 std_logic; 

module_data_in Input 16 std_logic_vector(15 downto 0); 

module_address Input 12 std_logic_vector(11 downto 0); 

serial_channels_out Output 120 std_logic_vector(0 to num_of_channels); 

fw_ack Output 1 std_logic; 

module_data_out Output 16 std_logic_vector(15 downto 0); 16 bit request data to D-

RORCs 

Table 5-20: I/O details for Transmitter Module. 

5.8.3 Entity Serial Encoder 

 

Figure 5-19: Entity for Serial Encoder. 

 

Port Name Direction # Bit Description 

rst40 Input 1 std_logic; synchronous reset 

clk40 Input 1 std_logic; ; the clock_in frequency is 200 MHz 

data_in Input 1 std_logic_vector;  

data_wren Input 1 std_logic; 

busy_out Output 1 std_logic; 

serial_out Output 1 std_logic; 

Table 5-21: I/O details for Serial Encoder. 

5.9 RX Memory Module 

The BusyBox can store up to 1024 D-RORC messages from the Receiver module in the RX Memory module. Four 

BRAM modules are instantiated in the FPGA and can be accessed from both clock domains
4
. Data from the 

Receiver module is 56 bit and is written into memory at the address given by a 10 bit counter. The DCS bus is 

limited to read 16 bit at a time, and needs four read operations to get the whole word from memory. The RX 

Memory module can be written to by the DCS bus for testing and verification purposes. 

                                                                 
4
 The Receiver module operates in the 200 MHz domain while the internal logic of the BusyBox runs in the 40 

MHz domain. 
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Figure 5-20: Illustration of the RX Memory module. From [Magne]. 

5.9.1 Entity RX Memory Module 

clk200     mem_pointer

clk40  module_data_in

rst200 module_data_out

data_in  module_address

data_in_en      module_rnw

      module_en
 

Figure 5-21: Entity for RX Memory Module. 

 

Port Name Direction # Bit Description 

clk200 Input 1 std_logic; the clk200 frequency is 200 MHz 

clk40 Input 1 std_logic; the clk40 frequency is 40.08 MHz 

rst200 Input 1 std_logic; synchronous reset 

rst40 Input 1 std_logic; synchronous reset 

data_in Input 64 std_logic_vector(63 downto 0); 

data_in_en Input 1 std_logic; 

mem_pointer Output  10 std_logic_vector(9 downto 0); 

module_data_in Output 16 std_logic_vector(15 downto 0); 

module_data_out Output 16 std_logic_vector(15 downto 0); 

module_address Output 12 std_logic_vector(11 downto 0); 

module_rnw Output 1 std_logic; 

module_en Output 1 std_logic; 

Table 5-22: I/O details for RX Memory Module. 



  P a g e  | 27 

 

5.10 RX Memory Filter Module 

The RX Memory filter can be used to filter which messages from specific channels will trigger the write enable 

signal form the RX Memory Module. Each message from the Receiver Module will have an 8 bit channel number 

appended to it. Each individual bit of this 8 bit word can be compared with bits in a register in the RX Memory 

Filter that is accessible from the DCS bus interface. The RX Memory Filter has registers with 16 bits. The first 8 

bits are used to toggle matching individual bits. The last 8 bits are the bits that will be compared with the 

channel number bits of the message. This feature makes it easier to see the response of only a subset of 

channels in the RX Memory without disabling the other channels in the CHEN registers.  

5.10.1 Entity RX Memory Filter Module 

 

 

Figure 5-22: Entity for RX Memory Filter. 

 

Port Name Direction # Bit Description 

pattern Input 8 std_logic_vector(7 downto 0); 

match_mask Input 8 std_logic_vector(7 downto 0); 

drorc_address Input 8 std_logic_vector(7 downto 0); 

write_en Input 1 std_logic; 

filtered_we Output 1 std_logic; 

Table 5-23: I/O details for RX Memory Filter. 

 

5.11 Trigger Receiver Module 

The optical signals from the CTP are converted to electrical signals by the TTCrx chip on the DCS board into 

Channel A and Channel B. The Trigger Receiver module decodes the information and stores it in a FIFO in the 

CDH (Common Data Header) format. Triggers will appear as individual signal at the module outputs.  

Channel A transmits the L0 and L1 triggers. Channel B transmits the broadcast message and the individually 

addressed messages. The addressed messages are decoded into the CDH format and put in a FIFO. The BusyBox  

extracts the event ID (OrbitID + BunchCountID), event info and event errors from the CDH. Figure 5-23 shows an 

overview of the Trigger Receiver module.  
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Figure 5-24: Block diagram of the Trigger Receiver module. From [Johan]. 
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5.11.1 Entity Trigger Receiver Module 

 

Figure 5-25: Entity for Trigger Receiver Module. 

Port Name Direction # Bit Description 

clk Input 1 std_logic; the clk frequency is 40.08 MHz 

reset_n Input 1 std_logic; 

L1Accept Input 1 std_logic; 

serialBchannel Input 1 std_logic; 

read_enable Input 1 std_logic; 

data_in Input 16 std_logic_vector(15 downto 0); 

addr Input 12 std_logic_vector(11 downto 0); 

rnw Input 1 std_logic; 

module_enable Input 1 std_logic; 

FEE_reset Output 1 std_logic; N/A 

busy Output 1 std_logic; 

cal_pre_pulse Output 1 std_logic; N/A 

start_of_run Output 1 std_logic; N/A 

end_of_run Output 1 std_logic; N/A 

event_reset Output 1 std_logic; N/A 

bunch_reset Output 1 std_logic; N/A 

bunchcnt_overflow Output 1 std_logic; N/A 

L0_trigger Output 1 std_logic; 

L1a_trigger Output 1 std_logic; 

L2a_trigger Output 1 std_logic; 

L2r_trigger Output 1 std_logic; 

L2_timeout Output 1 std_logic; 

DAQ_header_out Output 33 std_logic_vector(32 downto 0); 

read_counter_out Output 4 std_logic_vector(3 downto 0); 

buffered_events Output 4 std_logic_vector(3 downto 0); 

data_out Output 16 std_logic_vector(15 downto 0); 
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Table 5-24: I/O details for Trigger Receiver Module. 

5.12 Event ID Verification Module 

The Trigger Receiver module’s FIFO is constantly monitored by the Event ID Verification module. Data from an 

L2a/L2r or L2 timeout trigger is stored in the CDH format in the FIFO and will be read out by the Event ID Queue 

module. 

The event controller then requests the Transmitter module to read out the data and send it to the D-RORCs. The 

Receiver module forwards D-RORC data to the D-RORC Inbox Buffer. The Inbox operates in both frequency 

domains
5
 and makes the data available for the Event processor, which compares the event ID. 

The Event Processor has a register called EIDOK (Event ID OK), and together with the CHEN vector it compares 

the two event IDs from the Event ID Queue module and the D-RORC Inbox buffer. If the ID matches, the 

verification gate will assert an event verified signal. An overview of the ID verification model is shown in The 

BusyBox has no direct communication with the FEE and keeps track of available buffers by communicating with 

the D-RORCs. The Trigger System sends triggers to the BusyBox and the FEE. Figure 3-1  
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Figure 5-26: Illustration of the structure of event_validator_top module. 

The eventid_control block controls the flow of new eventIDs from the event_queue and DRORC messages from 

the drorc_inbox_buffer to the event_processor. It is also commands the TX controller to transmit requests to the 

DRORCs. The event_processor block determines when the current event has been verified/validated.  

5.12.1 Event_validator_top VHDL Entity Hierarchy 

• Event_validator_top 

o i_daq_header_extractor: daq_header_extractor 

o i_event_queue: FIFOsync108x512(Core) 

o i_eventid_control: eventid_control 

o i_event_processsor : event_processor 

                                                                 
5
 The Receiver module operates in the 200 MHz domain while the internal logic of the verification module runs 

in the 40 MHz domain. 
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o i_drorc_inbox_buffer: drorc_inbox_buffer (Core) 

5.12.2 Entity Event_validator_top 

 

Figure 5-27: Entity for event_validator_top module. 

 

Port Name Direction # Bit Description 

rst40 Input 1 std_logic; synchronous reset 

clk200 Input 1 std_logic; the clk200 frequency is 200 MHz 

clk40 Input 1 std_logic; the clk40 frequency is 40.08 MHz 

DRORC_data_in Input 48 std_logic_vector(47 downto 0); 

DRORC_channel Input 8 std_logic_vector(7 downto 0); 

DRORC_data_en Input 1 std_logic; 

CHEN_vector Input 120 std_logic_vector(0 to num_of_channels); 

DAQ_header_data Input 33 std_logic_vector(32 downto 0); 

buffered_events Input 4 std_logic_vector(3 downto 0); 

DAQ_read_counter Input 4 std_logic_vector(3 downto 0); 

force_validate Input 1 std_logic; 

halt_validator Input 1 std_logic; 

req_timeout Input 16 std_logic_vector(15 downto 0); 

fw_tx_ack Input 1 std_logic; 

EIDOK_vector Output 120 std_logic_vector(0 to num_of_channels); 

read_enable Output 1 std_logic; 

event_valid_out Output 1 std_logic; 

current_event_id Output 36 std_logic_vector(35 downto 0); 

most_recent_event_id Output 36 std_logic_vector(35 downto 0); 

requestID Output 4 std_logic_vector(3 downto 0); 

retry_count Output 16 std_logic_vector(15 downto 0); 

num_of_eventids Output 4 std_logic_vector(3 downto); 

fw_tx_request Output 1 std_logic; 

fw_tx_data Output 8 std_logic_vector(7 downto 0); 

fw_tx_mask Output 120 std_logic_vector(0 to num_of_channels); 

Table 5-25: I/O details for Event Validator. 
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5.12.3 Entity DAQ Header Extractor 

This module reads out the DAQ header (also called CDH (Common Data Header)) that the trigger receiver 

module generates and buffers. The Trigger Receiver Module stores the DAQ header as 9 32 bit words in an 

internal FIFO. Each word contains information about the received trigger sequence. The DAQ Header Extractor 

reads out all 9 words and outputs selected fields of information in parallel. Most importantly the EventID is 

extracted from the header. The extracted information is to a FIFO. The information is also forwarded to the 

Control and Status Register module.  

 

Figure 5-28: Entity for EventID Extractor. 

 

Port Name Direction # Bit Description 

clk40 Input 1 std_logic; the clock_in frequency is 40.08 MHz 

rst40 Input 1 std_logic; synchronous reset 

DAQ_header_data Input 33 std_logic_vector(32 downto 0); 33 bit word 

DAQ_read_counter Input 4 std_logic_vector(3 downto 0); counts through the 9 words in 

the CDH message 

DAQ_event_count Input 4 std_logic_vector(3 downto 0); counts numbers of buffered 

events in the FIFO 

DAQ_rden Output 1 std_logic; 

extracting_event Output 1 std_logic; status output 

extracted_event_id Output 36 std_logic_vector(35 downto 0); the extracted orbit end bunch 

cross IDs 

extracted_event_info Output 13 std_logic_vector(12 downto 0); 

extracted_event_error Output 25 std_logic_vector( 

    

    

Table 5-26: I/O details for EventID Extractor. 

5.12.4 Entity EventID Control 

The EventID Control module is a state machine that monitors and controls the event verification process. Under 

is a state diagram of the controller. 
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s_wait_for_eventID

Event_reset = 1

s_init

event_reset = 1

new_eventid_en = 1

s_send_request

tx_req = 1

tx_data = ’request eventID cmd’

s_increment_retry_counter

s_wait_for_messages

timer_reset = false

s_finish

event_valid_out = 1

halt_validator =0 &&

event_valid_int = 1

||

halt_validator = 1 &&

force_validate = 1

halt_event_validator = 1

Halt_validator = 0 

&&

event_valid_int = 0

&&

timeout = true

New_eventid_av = 1

halt_event_validator = 1

tx_ack = 1

 

Figure 5-29: State diagram for EventID Controller. 

 

 

Figure 5-30: Entity for EventID Control. 
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Port Name Direction # Bit Description 

clk40 Input 1 std_logic; the clk40 frequency is 40.08 MHz  

rst40 Input 1 std_logic; synchronous reset 

force_validate Input 1 std_logic; 

halt_validator Input 1 std_logic; 

new_eventid_av Input 1 std_logic; 

inbox_emty Input 1 std_logic; 

event_valid_int Input 1 std_logic; 

req_timeout Input 16 std_logic_vector(15 downto 0); 

tx_ack Input 1 std_logic; 

new_evetid_en Output 1 std_logic; 

inbox_read_req Output 1 std_logic; 

event_valid_out Output 1 std_logic; 

event_reset Output 1 std_logic; 

tx_req Output 1 std_logic; 

tx_data Output 8 std_logic_vector(7 downto 0); 

requestID Output 4 std_logic_vector(3 downto 0); 

retry_count Output 16 std_logic_vector(15 downto 0); 

Table 5-27: I/O details for EventID Control. 

5.12.5 Entity EventID Processor 

In this module all the verification occurs and based on the CEHN register it will continuously compare the event 

IDs  and set each individual channel with ‘1’ if match or ‘0’ if mismatch in a register called EIDOK. A verification 

gate will flag an event verified signal if either the CHEN register is disabled or all channels where checked in the 

EIDOK register.  

 

Figure 5-31: Entity for EventID Processor. 

 

Port Name Direction # Bit Description 

clk40 Input 1 std_logic; the clk40 frequency is 40.08 MHz 

rst40 Input 1 std_logic; synchronous reset 

trigger_eventid Input 36 std_logic_vector(35 downto 0); 

DRORC-message Input 56 std_logic_vector(55 downto 0); 

CHEN_vector Input 120 std_logic_vector(0 to num_of_channels); 

local_requestID Input 4 std_logic_vector(3 downto 0); 

event_reset Input 1 std_logic; 

EIDOK_vector Output 120 std_logic_vector(0 to num_of_channels); 

tx_mask Output 120 std_logic_vector(0 to num_of_channels); 

event_valid Output 1 std_logic; 
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Table 5-28: I/O details for EventID Processor. 

5.13 Busy Controller Module 

The busy_controller module is responsible for generating the BUSY signal. It does this by evaluating inputs from 

other modules and counting occupied Multi Event Buffers (MEB) in the FEE. 

There are four conditions that sets the busy signal high and only one have to be true: 

 

Figure 5-32: BUSY generation. 

1. The TTCrx ready (ttcrx_rdy) is added to the BusyBox since each sub-detector should report busy if this is 

not asserted. If there is a physical problem with the connection to the LTU or the CTP is issuing a global 

reset, the busy is set [JohanA]. Every time a L0 trigger is detected a countdown timer (timeout_active) 

starts and the busy is set for this time period. The busy time can be set manually with a register in the 

Control and Status Register module. 

2. The busy_controller keeps track of how many Multi Event Buffers (MEB) are occupied in the FEE. If the 

number of occupied MEBs is greater or equal than then a programmable limit then BUSY is asserted. 

3. The BUSY is asserted whenever the trigger receiver is busy, which means we are in the middle of a 

trigger sequence. 

4. The Busy Controller module increment a register (buffer_count) when a L0 is detected (L1 for TPC), 

decrements the register when a L2 Reject trigger is asserted and when the Event ID Verification module 

asserts the event valid signal. 

The number of occupied MEBs is calculated by monitoring the triggers and the validation of event IDs process. 

CNT
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Figure 5-33: MEB counter. 

The counter is incremented when a L1 trigger is seen. It decrements on a L2 Reject or L2 Timeout and when 

event valid and event payload is active at the same time. See Figure 5-33. 

5.13.1 Entity Busy Controller Module 
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Figure 5-34: Entity for Busy Controller Module. 

 

Port Name Direction # Bit Description 

rst40 Input 1 std_logic; synchronous resets  

clk40 Input 1 std_logic; the clk40 frequency is 40.08 MHz. 

ttcrx_rdy Input 1 std_logic; ttcrx_rdy out from dcs_ctrl7 (physical line on the 

DCS-RCU connector).  If  not asserted it implies a physical 

problem with connection to the LTU, or  that the CTP is 

issuing a global reset via the TTCrx. 

L0_trigger Input 1 std_logic; N/A 

L1a_trigger Input 1 std_logic; L1a_trigger output from 

trigger_receiver_busy_model. Starts buffering data in Fee if 

L1a_trigger signal is asserted. 

L2a_trigger Input 1 std_logic; N/A 

L2r_trigger Input 1 std_logic; L1r_trigger output from 

trigger_receiver_busy_model. Overwrites buffers in Fee if 

L2r_trigger signal is asserted.    

L2_timeout Input 1 std_logic; L2_timeout output from 

trigger_receiver_busy_model. Overwrites buffers in Fee if 

L2_timeout signal is asserted. 

busy_triggermodule Input 1 std_logic; busy_triggermodule output from 

trigger_receiver_module. 

event_valid Input  1 std_logic;  

trig_timeout Input 16 std_logic_vector(15 downto 0); programmable timeout 

following the start of a trigger sequence. 10 us resolution. 

Register 0x2008 in Control and Status Register. Set Register 

to A (10 decimal) to get 100 us timeout. 

fee_buffers_available Input  4 std_logic_vector(3 downto 0);  Holds the numbers of 

buffers assumed on the FEE. Register 0x2009. Default is 4. 

busy_out Output 1 std_logic; busy_out is asserted when busy conditions are 

met. 

fee_buffers_used Output 4 std_logic_vector(3 downto 0);  

busy_time Output  32 std_logic_vector(31 downto 0); busy_time count numbers 

of clock cycles busy signal is asserted. 

Table 5-29: I/O details for Busy Controller Module. 

5.14 Control and Status Registers 
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This module has information about register and control signals available for the BusyBox. See chapter 8 for 

more information.  

5.14.1 Entity Control and Status Register 

 

Figure 5-35: Entity for Control and Status Registers. 

 

 

Port Name Direction # Bit Description 

clk40 Input 1 std_logic; the clk40 frequency is 40.08 MHz 

rst40 Input 1 std_logic; synchronous resets 

module_en Input 1 std_logic; 

module_rnw Input 1 std_logic; 

module_address Input 12 std_logic_vector(11 downto 0); 

module_data_in Input 16 std_logic_vector(15 downto 0); 

mem_pointer Input 10 std_logic_vector(9 downto 0); 

event_count Input 4 std_logic_vector(3 downto 0); 

current_eventid Input 36 std_logic_vector(35 downto 0); 

most_recent_eventid Input 36 std_logic_vector(35 downto 0); 

requestID Input 4 std_logic_vector(3 downto 0); 

retry_count Input 16 std_logic_vector(15 downto 0); 

EIDOK_vector Input 120 std_logic_vector(0 to num_of_channels); 

busy_time Input 32 std_logic_vector(31 downto 0); 

module_data_out Output 16 std_logic_vector(15 downto 0); 

rx_mem_matching_mask Output 8 std_logic_vector(7 downto 0); 

rx_mem_pattern Output 8 std_logic_vector(7 downto 0); 

fee_buffers_available Output 4 std_logic_vector(3 downto 0); 

trig_timeout Output 16 std_logic_vector(15 downto 0); 

req_timout Output 16 std_logic_vector(15 downto 0); 

halt_validator Output 1 std_logic; 

force_validate Output 1 std_logic; 

CHEN_vector_out Output 120 std_logic_vector(0 to num_of_channels); 

Table 5-30: I/O details for Control and Status Registers. 
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6 Functional verification of the BusyBox firmware 

6.1 Introduction 

This chapter describes a testbench for the BusyBox firmware. The testbench is designed to emulate a complete 

environment around the BusyBox top level module busylogic_top. The FPGA specific wrappers are not included 

in the test setup.  

The BusyBox interacts with the outside world through numerous interfaces: 

1. Clocks & Reset 

2. Trigger System; L1Trig and SerialB 

3. DCS bus 

4. Serial RX and TX to DRORCs 

 

The testbench is impelemented in the VHDL file tb_trigger_busybox.vhd. It emulates the outside world of all 

these interfaces, providing stimuli and interaction. Figure 6-1 shows a structural overview of the testbench. The 

Unit Under Test (UUT) is the rectangular box in the middle. Other rectangular boxes are modules instantiated in 

the testbench. Elliptic shapes are processes defined in the testbench. 
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Figure 6-1: Stuctural overview of the testbench for the BusyBox logic. 

The clock generators are simply concurrent procedure calls to clk_gen in the busybox_tb_pkg. See section 6.2.1 

for more details on the procedure. The system needs two clocks to operate, one at 200 MHz and one at 40 MHz. 

    p_clockA : clkgen(clkA_period, clk_en, clk200); 
    p_clockB : clkgen(clkB_period, clk_en, clk40); 
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The process tb_main generates trigger sequences and access registers in the UUT over the DCS bus. An extra 

trigger_receiver is instantiated in the testbench to acquire the same trigger information as produced by the 

trigger_receiver in the UUT. The decoded triggers are read out from the extra trigger_receiver and the eventID 

is extracted and pushed to the rcu_drorc_emulator modules which communicate with the BusyBox over serial 

links. 

The trigger sequences are easily generated by a procedure call to run_sequence defined in the busybox_tb_pkg 

VHDL package which is described in section The busybox_tb_pkg package6.2.1. 

 

6.2 Support packages 

The testbench makes use of the following packages: 

• ieee.std_logic_1164.all; IEEE package defining std_logic type and derived types. 

• ieee.numeric_std.all; - IEEE package for numeric operations on std_logic based (sub)types 

• ieee.math_real.all; - IEEE package for math operations, used for random generation. 

• std.textio.all; - Package for modifying and printing text strings. 

• work.tb_pkg.all; 

• work.busybox_tb_pkg.all; - Package containing various definitions of types, functions and procedures 

used in the testbench. 

 

6.2.1 The busybox_tb_pkg package 

This package was written specifically for this testbench and holds definitions required by it. 

A record type is defined that contains all signals related to the bus interface with the DCS board. Procedures for 

performing read and write operations on this interface are also defined. 

type t_bb_bus_record is record 
    strobe_n        : std_logic; 
    RnW             : std_logic; 
    addr            : std_logic_vector(15 downto 0); 
    data            : std_logic_vector(15 downto 0); 
    ack_n           : std_logic; 
end record t_bb_bus_record; 

 

Procedures for performing master read and write bus transactions using the bus record types defined in the 

package. The procedures are used for accessing and testing the internal busybox registers during simulation. 

They must be called from a sequential process and will block the calling process until they return. 

procedure bb_bus_read ( 
    constant addr   : in    std_logic_vector; 
    variable data   : out   std_logic_vector; 
    signal bb_bus   : inout t_bb_bus_record); 
 
procedure bb_bus_write ( 
    constant addr, data : in    std_logic_vector; 
    signal bb_bus       : inout t_bb_bus_record); 

 

The clk_gen procedure makes it easy to generated clocks in the testbench. The procedure is called from the 

concurrent section of a module and will act as a process. 
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• The period is specified by a constant and cannot be changed afterwards.  

• The clock output can be enabled or disabled by the clk_en input.  

procedure clkgen( 
constant period     : in time; 
signal clk_en       : in boolean; 
signal clk          : out std_logic); 

 

For a convenient and compact definition of a trigger sequence a record type is defined that holds all relevant 

parameters of a trigger sequence. A defined sequence is executed by calling a procedure (run_sequence) with 

an instance of this record type is one of its parameters. 

 

type sequence_type is record                          
    description     : string(1 to 80);                
    L0_enable       : boolean;                        
    L1_enable       : boolean;                        
    L1Msg_enable    : boolean;                        
    L2Msg_enable    : boolean;                        
    L2Accept        : boolean;                        
    L1_latency      : time;                           
    L1Msg_latency   : time;                           
    L2Msg_latency   : time;                           
    L1_ESR          : std_logic;                      
    L1_CIT          : std_logic;                      
    L1_SwC          : std_logic;                      
    L1_RoC          : std_logic_vector(3 downto 0);   
    L1_Class        : std_logic_vector(49 downto 0);  
    L2_ESR          : std_logic;                      
    L2_CIT          : std_logic;                      
    L2_SwC          : std_logic;                      
    L2_Cluster      : std_logic_vector(5 downto 0);   
    L2_Class        : std_logic_vector(49 downto 0);  
    BCID            : std_logic_vector(11 downto 0);  
    OrbitID         : std_logic_vector(23 downto 0);  
end record sequence_type; 

 

A more detailed description of the trigger sequence parameters follow: 

Parameter Description Default value 

description A string of 80 characters that can be used to describe the sequence. 

This string will be printed to console when the sequence is executed 

during simulation runs. 

"Default sequence 

L0-L1A-L1Msg-

L2AMsg.” 

L0_enable Include the L0 trigger in the sequence true 

L1_enable Include the L1 trigger in the sequence true 

L1Msg_enable Include the L1 Message in the sequence true 

L2Msg_enable Include the L2 Message in the sequence true 

L2Accept true => Level 2 Accept Message 

false => Level 2 Reject Message 

true 

L1_latency Latency from rising edge of L0 trigger to rising edge of L1 trigger on 

the L1Trig signal 

5.3 µs 

L1Msg_latency Latency from rising edge of L0 trigger to the start bit of the L1 

Message on the serialB signal 

6.3 µs 

L2Msg_latency Latency from rising edge of L0 trigger to the start bit of the L2 85 µs 
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• It is a required relationship that L1_latency < L1Msg_latency < L2Msg_latency. 

• The BCID and OrbitID values combined make up the eventID. 

• Message content entries besides the eventID are not relevant for the BusyBox operation. 

• A constant with default values for all parameters is defined in the busybox_tb_pkg. This constant can 

be used as init value to instantiate a record with default values.  

Refer to documentation for the ALICE trigger system for more information on the message contents.  

 

Procedure for executing a sequence and driving the L1Trig and SerialB signals. 

procedure run_sequence (  
signal clk     : in std_logic; 
constant seq   : in sequence_type; 
signal L1trig  : out std_logic; 
signal serialb : out std_logic); 

The procedure produces a sequence in the following order L0 tirgger – L1 trigger – L1 Message – L2 Message. 

The different stages can be enabled and disabled by setting the flags in the sequence record type. The L0 trigger 

is executed at the first rising edge of the testbench clock after the procedure is called. All other latencies are 

referenced from this time. If e.g. the L2 Message latency has already passed when the L1 message is finished, it 

will be executed right away. This is true for all latencies defined in the trigger sequence record type. 

 

6.3 The RCU and DRORC emulator module 

This module has been designed to emulate the RCU and DRORC devices from the BusyBox’s point of view. Only 

the functions required for the operation of the BusyBox are emulated. In the real system the RCUs will read 

event data from the Front End Cards and push it to the DRORCs. The event data is preceded by a Common Data 

Header (CDH) which contains information related to the event, amongst others the EventID. When the DRORC 

has received an event, including the CDH, from the RCU the EventID is extracted and put in a FIFO queue. When 

the BusyBox requests a new EventID, the DRORC will look for it in this FIFO queue. Since the size of the event 

data will vary between events and FEE patches (RCU with FECs attached) the time taken from an event has been 

triggered until the EventID ends up in the DRORCs EventID queue will vary as well. 

To emulate this behaviour the rcu_drorc_emulator module has to FIFOs for eventIDs. The first is used for storing 

EventIDs as they are triggered and the second to hold EventIDs that have been transmitted to the DRORCs. 

Internally the module generates random times from 100 to 500 µs that it will wait before moving an EventID 

Message 

L1_ESR Level 1 Message content : Enable Segemented Readout ‘0’ 

L1_CIT Level 1 Message content: Calibration trigger flag ‘0’ 

L1_SwC Level 1 Message content: Software trigger ‘0’ 

L1_RoC Level 1 Message content: ReadOut Chamber “0000” 

L1_Class Level 1 Message content: Level 1 Class trigger state flag (others => ‘0’) 

L2_ESR Level 2 Message content: Enable Segmented Readout ‘0’ 

L2_CIT Level 2 Message content: Calibration trigger flag ‘0’ 

L2_SwC Level 2 Message content: Software trigger flag ‘0’ 

L2_Cluster Level 2 Message content: Cluster trigger flag (others => ‘0’) 

L2_Class Level 2 Message content: Level 2 Class trigger flag (others => ‘0’) 

BCID Level 2 Message content: Bunch Crossing ID X”789” 

OrbitID Level 2 Message content: Orbit ID X”123456” 
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from the first FIFO to the second. The random time emulates the variance in event data sizes. The concept is 

illustrated in Figure 6-2. 

 

 

Figure 6-2: Illustration of the RCU and DRORC emulation. 

The number of EventIDs stored in the FEE buffer corresponds to Multi Event Buffers (MEBs) in use on the real 

system. This number is monitored by the testbench to check that it never exceeds the specified maximum 

numbers events that can be stored on the FEE. The DRORC emulator takes care of the communications with the 

BusyBox. Requests/commands from the BusyBox are handled in the same manner as for the real DRORC. Serial 

receiver and transmitter modules are used for communication with the BusyBox. 

 

6.4 Testbench execution flow 

 

The process tb_main controls the simulation. It begins by setting some signals to default values and resetting 

the UUT and any support modules. At line 7 the dcm_lock signal is asserted to indicate to the busylogic_top 

module the the DCM has locked on the external clock. Then the reset is released. At lines 11 and 12 it writes to 

two configuration registers to set the MEB limit to 4 and release the busybox FSM (set the halt FSM bit to 0). All 

other registers are left at their default value. Now the BusyBox should release the BUSY and be ready to receive 

triggers. 

1 clk_en <= true; 
2 dcm_lock <= '0'; 
3 serialb <= '1'; 
4 L1trig <= '0'; 
5 areset <= '1'; 
6 wait for 200 ns; 
7 dcm_lock <= '1'; 
8 wait for 10 us; 
9 areset <= '0'; 
10 header("Testbench for BusyBox", "A sequence of basic triggers."); 
11 bb_bus_write(X"2009", X"0004", dcs_bus); -- set MEB to 4 
12 bb_bus_write(X"200A", X"0000", dcs_bus); -- release busybox FSM 
13 wait for 500 ns; 
14 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
15 wait for 100 us; 
16 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
17 wait until busy_out = '0'; 
18 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
19 wait until busy_out = '0'; 
20 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
21 wait until busy_out = '0'; 
22 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
23 wait until busy_out = '0'; 
24 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
25 wait until busy_out = '0'; 
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26 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
27 wait until busy_out = '0'; 
28 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
29 wait until busy_out = '0'; 
30 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
31 wait until busy_out = '0'; 
32 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
33 wait until busy_out = '0'; 
34 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
35 wait until busy_out = '0'; 
36 run_sequence(clk40, trigger_sequence1, L1trig, serialB); 
37 wait until busy_out = '0' and BusyBox_MEB_cnt = "0000"; 
38 clk_en <= false; 
39 wait; 

 

Next, the process starts sending trigger sequences by calling the run_sequence procedure. A wait statement 

ensures that BUSY is not asserted before sending a trigger sequence. The simulation will end when all 

statements in this process have completed. The final statements wait until the BUSY has been de-asserted and 

the BusyBox MEB count has reached 0. Then the clocks are disabled and the process goes to sleep. 

During the entire simulation a concurrent assert statement makes sure that the MEB counts from all the 

rcu_drorc_emulator modules are never higher than the MEB count of the BusyBox. This is important as it tests 

whether the BusyBox will toggle the BUSY output correctly so that the FEE cannot experience buffer overflows 

during operation. 

assert RCU_MEB_cnt_array(i) <= BusyBox_MEB_cnt  
       report "Possible Buffer overflow detected!"  
       severity warning; 

 

Below is an excerpt from the output/console when running the testbench. 

#   10400 ns: bb_bus_write: ADDR 0x2009 DATA 0x0004 
#   10650 ns: bb_bus_write: ADDR 0x200A DATA 0x0000 
#   11200 ns: Running trigger sequence number 1 
#   11200 ns: Sending Level 0 Trigger. 
#   16500 ns: Sending Level 1 Trigger. Time since sequence init : 5300 ns 
#   17500 ns: Sending Level 1 Message. Time since sequence init : 6300 ns 
#   96200 ns: Sending Level 2 Accept Message. Time since sequence init : 85000 ns 
# ==================== Trigger Receiver DAQ event FIFO ==================== 
# Event Info  : 0xA9501800 
#             + Bit 11 : L2 Accept received. 
#             + Bit 12 : Include payload. 
# Event Error : 0x00002000 
#             + Bit 13 : Buondary L1. 
# DAQ1        : 0x02000789 
# DAQ2        : 0x00123456 
# DAQ3        : 0x00000000 
# DAQ4        : 0x0100028E 
# DAQ5        : 0x00000000 
# DAQ6        : 0x00000000 
# DAQ7        : 0x00000000 
# ========================================================================= 
#  204850 ns: Running trigger sequence number 2 
#  204850 ns: Sending Level 0 Trigger. 
#  210150 ns: Sending Level 1 Trigger. Time since sequence init : 5300 ns 
#  211150 ns: Sending Level 1 Message. Time since sequence init : 6300 ns 
#  289850 ns: Sending Level 2 Accept Message. Time since sequence init : 85000 ns 
# ==================== Trigger Receiver DAQ event FIFO ==================== 
# Event Info  : 0xA9501800 
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#             + Bit 11 : L2 Accept received. 
#             + Bit 12 : Include payload. 
# Event Error : 0x00002000 
#             + Bit 13 : Buondary L1. 
# DAQ1        : 0x02000789 
# DAQ2        : 0x00123456 
# DAQ3        : 0x00000000 
# DAQ4        : 0x010000D0 
# DAQ5        : 0x00000000 
# DAQ6        : 0x00000000 
# DAQ7        : 0x00000000 
# ========================================================================= 

 

6.5 Running the simulation in QuestaSim/ModelSim 

1) start questa/modelsim 

2) cd to trunk/simulation 

3) source project_setup.tcl 

4) vsim tb_trigger_busybox 

5) add wave * 

6) run –all 

Some files (only testbench files) may fail compilation because they use some features from VHDL 2008. Set the 

compiler to use VHDL 2008 to compile these files. 
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7 BusyBox DCS board 

 

 

# Type Description 

1 Optical input  Input from LTU or CTP emulator 

2 UART RS-422 connection 

3 Connector DCS bus connector to BusyBox PCB 

4 Ethernet Ethernet link to communicate with DCS board 

Table 7-1: Connectors on the DCS board. 

Figure 7-1: PCB layout of DCS board. 
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7.1 Setting up DCS board Firmware to use with BusyBox 

The DCS board firmware needs to be adapted for the BusyBox. If the DCS board is not already modified, it needs 

to be reprogrammed to fit the BusyBox. The latest firmware is available here: 

https://wikihost.uib.no/ift/index.php/Electronics_for_the_Time_Projection_Chamber_%28TPC%29#DCS_board_

firmware_for_TPC_and_PHOS 

Here a description of how to update the DCS board flash device is also given. 
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8 BusyBox Communication 

This chapter discusses the how the BusyBox handles communication with the D-RORCs. 

8.1 BusyBox - DRORC Communication 

A robust serial communication has been developed for communication between the BusyBox and the D-RORCs. 

- Serial, 48 bit oriented, bidirectional data transfer can be made at up to  

8.1.1 Physical Layer 

Category 5 cables with RJ-45 connectors are the communication channel between the BusyBox and D-RORCs. 

Built in I/O blocks in the Virtex-4 FPGA is set to I/O standard specified as LVDS_25 and DIFF_TERM attribute is 

set to true.  

 

Figure: 8-1: RJ-45 pin connection scheme. 

8.1.2 Data Link Layer 

Serial data is transmitted with NRZ encoding at a 40 MHz bit rate. Three 16 bit data packages are sent from the 

D-RORCs to the BusyBox on request from the BusyBox. The packages are concatenated to one 48 bit message in 

the BusyBox receiver module. The messages from the BusyBox to the D-RORCs are 16 bit long.  

The receiver samples the incoming serial data at 200 MHz into a 98 bit shift register. When bits 1 to 8 are 

‘00001111’ and bits 96 to 98 are ‘000’ in the shift register, the capture condition is valid, and the data is passed 

to the majority vote. 

Bit range 1 2 3 4 5 6 7 8 . . . 96 97 98 

Bit value 0 0 0 0 1 1 1 1 x x x 0 0 0 

Table 8-1: Capture condition for a data frame. 

One bit period is 5 cycles and the three middle bits are run through a majority gate. The captured data word is 

17 bit long with the LSB as the parity bit. If there is any parity error or timeout error during the data capture 

data is discarded. The timeout clock counts 110 cycles from the first received bit before a timeout error is issued. 

When three 16 bit data packages are received without error they are concatenated into a 48 bit package and 

stored. 
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Bit 

position 

8 

P4 

7 

D4 

6 

D3 

5 

D2 

4 

P3 

3 

D1 

2 

P2 

1 

P1 

P1  X  X  X  P1 

P2  X X   X P2  

P3  X X X P3    

P4 P4 X X X X X X X 

Table 8-2: Hamming code table. 

 

Messages from the BusyBox to the D-RORCs are Hamming encoded with an 8:4 code applied and sent in series. 

Each bit is cycled five times and the transmission starts with two start bits followed by 16 data bit, one parity bit 

and a stop bit.  

 

Figure 8-1: One serial data transmission. 

8.1.3 Network Layer 

The BusyBox will request event IDs from all active D-RORCs when a Level 2 Accept trigger is issued. The 

transmitter will keep sending new request at a programmable time interval until all the D-RORC have replied. 

Request can either be issued automatically by the firmware or manually by the DCS software. 

 

15 -12 11 – 8  7 – 0 

Command type Request ID  Unused 

Table 8-3: Bit-map for BusyBox Messages. 

The messages from the D-RORCs are 48 bits long and the time to receive one message is 1.2 µs. Every channel is 

checked every 120 clock cycle, i.e. 3 µs. 

 

47 – 44  43 – 32 31 – 8 7 -0 

Request ID Bunch Count ID Orbit ID D-RORC ID 

Table 8-4: Bit-map for D-RORC messages. 
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8.1.4 Sequence Diagrams 

Reset ststus registers

EventID in Queue?

Start

Pop EventID from Queue

Event Valid?

Timeout?

Retry >= limit?

Update masking vector

Update error registers

Wait for DCS intervention

Generate Request ID

Request EventID from D-RORCs

Start timer

Process incomming messages

Update status registers

Increment retry counter

No

No

No

Yes

Yes

Yes

Yes

Start: Reveived messages from BusyBox

Store received request ID

Pop eventID from queue

Update output buffer

Transmit output buffer to BusyBox

New request ID?

New eventID available?

No

Yes

No

Yes

 

Figure 8-2: Sequence diagram for the BusyBox (on the left) and D-RORC (on the right) 

See chapter 4.5 and 4.6 for more information on how the sending and receiving hardware modules work. 
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8.2 TTCrx Communication  

The trigger information from the LTU is acquired by the TTC receiver chip (TTCrx) on the DCS board. The Trigger 

Receiver module on the BusyBox decodes the information into three parts: Channel A, Channel B and BC. 

Channel A 

L0 and L1 triggers are transmitted on Channel A using LVDS from the TTCrx chip  

Channel B 

Channel B transmits two types of messages: Broadcast messages and individual address messages. The 

broadcast message is decoded into a pre-pulse bit, an event count reset bit and a bounchcount reset bit. The 

individual addressed messages are decoded into L1a, L2a, L2r and RoI messages. 

BC   

The Bunch Count, 40 MHz, is distributed to the BusyBox logic and DCS board.  

8.3 DCS Communication 

 

Figure 8-3: Read and write transactions on the DCS bus. From [Magne] 

Communication between the DCS board FPGA and the BusyBox motherboard FPGA is a 16 bit asynchronous 

handshake protocol. The DCS card is the master and the FPGA is the slave. A transaction starts with STROBE_N 

on the DCS and ACK_N from the BusyBox. RnW indicates read/write and when reading the BusyBox drives the 

data lines. When writing, the DCS board drives the data lines. If an address given by the DCS board does not 

point to any module/sub-module in the BusyBox firmware the request is be ignored, and the transaction times 

out.  

FPGA address Module address Sub module address 

15 14 – 12 11 – 0  

Table 8-5: Bit-mapping of DCS bus address. 

8.4 LTU Communication 

The BusyBox has two LEMO contacts. The busy signal is driven through a CERN certified LVDS driver via coaxial 

cables from the counting room to the LTU in the experiment hall. 
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9 Getting started with the BusyBox 

This chapter will give some insight in how to get started with the BusyBox and make changes to the firmware. 

In addition the CTP emulator will be discussed. 

9.1 Introduction 

TCL scripts sets up projects in Xilinx ISE Design Suit and Mentor Graphics’ QuestaSim. All the files needed for the 

BusyBox are in a repository. The scripts are written to implement the files to checkout and build or simulate the 

design.  

Furthermore, knowledge about the interaction with the BusyBox hardware is given on how to program, 

read/write registers and test the design with triggers from a trigger emulator. 

9.2 SVN Repository and Project Setup 

The BusyBox firmware has been written in Xilinx ISE Design Suite and tested in Mentor Graphics’ QuestaSim. 

The source code and other relevant files for the BusyBox are stored in a SVN repository to make it easy to see 

the latest work done. 

9.2.1 SVN Repository  

A repository has been created to have a place where 

data is stored and maintain for future retrieval to 

manage ongoing development of digital documents in 

the BusyBox project. Any changes in the document 

are identified by incrementing an associated number, 

termed the revision number. The University of Bergen 

uses a SVN repository. 

TortoiseSVN is an open source revision control 

software for Microsoft Windows. To download the 

software, go to: 

 http://tortoisesvn.net/downloads  

TortoiseSVN is a shell extension that is integrated into 

the Windows explorer. So, after you have downloaded 

and installed TortoiseSVN, open the explorer and 

right-click on any folder you like to bring up the 

context menu where you will find all TortoiseSVN 

commands. 

Select “TortoiseSVN” and “Create repository here”. 

Then you right-click on the folder again and select “Import”. The URL for the repository is: 

https://svn.ift.uib.no/svn/busybox_firmware 

Username and password can be acquired by contacting the microelectronics division at IFT, UIB. 

Figure 9-1: TortoiseSVN example. 
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9.3 Hardware Setup 

 

Figure 9-2: Principle hardware setup for experimenting with the BusyBox 

The BusyBox is connected to the Ethernet and the CTP Emulator. The physical distance between the two devices 

are limited by the optical cable, and the PC can be anywhere, but for practical reasons it should be in near 

proximity to the others. 

The optical fibre cable from the CTP Emulator goes into #1 in figure 5-1. 

The Ethernet cable goes into #4 in figure 5-1. 

The Ethernet connector on the DCS card is a 6 pin Milli-Grid crimp housing and the cable connections can be 

found here: 

http://www.kip.uni-heidelberg.de/ti/DCS-Board/current/mechanic/DCS160Ethernet01.htm 

9.4 Logging on to the DCS board 

The DCS board mounted on the BusyBox is the easiest way to interact with the firmware. From her registers can 

be accessed and new firmware can be programmed to the Virtex-4 chip(s). 

Interfacing with the DCS board is done either trough Ethernet or UART, but Ethernet is the preferred way. The 

DCS board runs on a lightweight version of Linux and is access through a SSH shell. For Microsoft Windows users 

a SSH client can be used like the PuTTY SSH client. 

Open a terminal window on a Linux computer or a SSH client on a Windows computer. 

To login type: 

ssh root@dcsxxxx 

The xxxx is substituted with the number on the DCS card. Then you will be prompted for a password.   

To get the password contact: 
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9.5 RCU Shell 

The RCU Shell is a small command-line software for communicating with the firmware on the BusyBox. It is 

started by simply typing 'rcu-sh' at the command-line. This will bring you to the shell mode, where different 

types of commands can be executed, for example for reading and writing registers in the BusyBox firmware. 

Type “h” and press “enter” to see available commands in the RCU shell. 

9.6 Programming the FPGA 

The FPGA(s) will not be programmed automatically when the box is powered up. To check if the FPGAs are 

programmed one can try to read some register with the RCU shell, e.g: shell prompt on DCS board: rcu-sh r 

0x1000. 

If the result is “no target answer” then the FPGA is not programmed. Otherwise you should get the value of the 

register. 

The easist way to program the FPGAs is to use the shell script "program". This script should be located with the 

programming files for the FPGAS (*.bit) in the directory "/mnt/dcsbro/busy/busybox-files/" 

Prompt on DCS board: ./program <programmingfile1.bit> [<programmingfile2.bit>] 

There should be four programming files in the directory: 

1. busybox_fpga1.bit for the first of two FPGAs 

2. busybox_fpga2.bit for the second of two FPGAs 

3. busybox_fpga1_solo.bit for FPGAs on boards/boxes where only on FPGA is mounted. 

4. busybox_dummy.bit will be used by the script to program the second FPGA if no second programming file is 

given.  

Note: When two FPGAs are mounted then both must be programmed, or the firmware will not start up. 

The bit files to be programmed into the FPGA(s) must be put in the folder:  

/nfs_export/dcscard on kjekspc7. 

 

9.7 Configuring the Firmware 

Modify the shell script bbinit.sh to fit your setup. 

9.8 Monitoring the BusyBox registers 

Use regpoll.sh status to view most of the status registers of the BusyBox. 

Type: 

./regpoll.sh status 

To display the channel registers use regpoll.sh channels. 

Type: 
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./regpoll.sh channels 

9.9 Resetting the BusyBox 

To activate the global asynchronous reset of the Busy Box firmware (both FPGAs)run "rcu-sh fw r". This will 

reset all registers in the Busy Box (except for the block RAMs).The configuration registers must be set again, 

including channel registers. Sending and Receiving messages to/from the D-RORCs. 

9.10 CTP Emulator 

When testing or debugging the BusyBox a trigger emulator can be used.  

Open a terminal window in Linux. 

Type: ssh –X ltu@vme1, and enter the password when prompted.  

Type: vmecrate ltu. 

 

 

 

 

 

 

Then the VME menu is displayed.  

Click Configuration and LTUinit. 

Click Configuration and TTCreset. 

Click CTP Emulator. 

The CTP Emulator window pops up.    

 

 

Figure 9-3: Example of login. 
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Next to the Sequence tag click L2a.seq and click Load sequence. 

Click Start emulation. 

So, when you click the Generate SW ‘Start signal(s)’ trigger sequences are sent to the BusyBox. 

To get the password contact: 
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10 Register 

All registers for the BusyBox are listed below.  

10.1 BusyBox Register Interface 

 

Register Name Address Type 6 Decription 
TX Register[15:0] 0x30001 RW Transmits a message on serial ports when 

written to. Bit 7:0 is TX Data. Bit 15:8 gives 
channel number in hexadecimal. Any value 
greater than the actual number of channels will 
result in a broadcast on all channels. 

RX Memory1[15:0] 0x1000-
0x1FFF 

RW All addresses in range where the 2 LSBs are 
‘00’. Holds DRORC message [47:32]. 

RX Memory2[15:0] 0x1000-
0x1FFF 

RW All addresses in range where the 2 LSBs are 
‘01’. Holds DRORC message [31:16]. 

RX Memory3[15:0] 0x1000-
0x1FFF 

RW All addresses in range where the 2 LSBs are 
‘10’. Holds DRORC message [15:0]. 

RX Memory4[15:8] 0x1000-
0x1FFF 

RW All addresses in range where the 2 LSBs are 
‘11’. Holds DRORC channel number. 

RX Memory Pointer[11:0] 0x2000 R Value indicates where next message from 
DRORC will be written in RX Memory. 

Event ID Count[8:0] 0x2001 R Number of Event Ids extracted from triggers and 
stored in FIFO. 

Current EventID[3:0] 0x2002 R Bit 35:32 of Event ID currently being matched. 
Current EventID[15:0] 0x2003 R Bit 31:16 of Event ID currently being matched. 
Current EventID[15:0] 0x2004 R Bit 15:0 of Event ID currently being matched. 
Newest EventID[3:0] 0x2005 R Bit 35:32 of Event ID most recently received 

from triggers. 
Newest EventID[15:0] 0x2006 R Bit 31:16 of Event ID most recently received 

from triggers. 
Newest EventID[15:0] 0x2007 R Bit 15:0 of Event ID most recently received from 

triggers. 
L0 trigger timeout 0x2008 RW Number of clock cycles 'busy' will be asserted 

after an L0 trigger. Note: The busy will not be 
deasserted if the buffers are full. 

FEE Buffers 
Available[3:0] 

0x2009 RW Configuration register which indicates how 
many events can be stored in the buffers on the 
FEE. 

Halt FSM[0] 0x200A RW When set to ‘1’ the FSM that controls the Event 
ID matching will halt in a known state. 

Force Event ID Match[0] 0x200B W Writing ‘1’ to this register when the FSM has 
been halted will cause the FSM to move on to 
the next Event ID. 

Re-request Timeout[15:0] 0x200C RW Number of clock cycles (40 MHz domain) to 
wait in between sending requests to the 
DRORCs. 

Current Request ID[3:0] 0x200D R Holds the Request ID the Busy Box uses to 
request Event Ids from the DRORCs. 

Request Retry 
Count[15:0] 

0x200E R Number of iterations the FSM has made while 
trying to match the current Event ID. 

Busy Timer[15:0] 0x2010 R Bit 31:16 of register that holds number of cycles 
the BUSY has been asserted. 

                                                                 
6
 Legend: W=write, R=read, T= write trigger (not physical registers) 
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Busy Timer[15:0] 0x2011 R Bit 15:0 of register that holds number of cycles 
the BUSY has been asserted. 

RX Memory  0x2012 RW Filters which messages will be stored in RX  
Filter[15:0]   Memory by channel number. Bit 7:0 is matching 

pattern. Bit 15:8 is matching mask to 
enable/disable matching of individual bits. 

L0 deadtime offset[15:0] 0x2013 RW Bit 31:16 of register that holds number of cycles 
the ‘busy’ will be asserted after a L0 trigger. 

L0 deadtime offset[15:0] 0x2014 RW Bit 15:0 of register that holds number of cycles 
the ‘busy’ will be asserted after a L0 trigger. 

Channel Register[3:0] 0x21XX RW Provides information on status of channel ‘XX’. 
Bit 0: ‘1’ receiver for the channel is enabled and 
a matching Event ID from this channel is 
required. Bit 1: ‘1’ indicates that the current 
Event ID has been matched for this channel. 
This bit is read only. 

Table 10-1:List of registers that can be accessed externally. 

 

10.2 Trigger Receiver Module Register Interface 

Register name Address Type7 Description 
Control[15:0] 0x3000 RW [0] Serial B channel on/off  Default: 1 

[1] Disable_error_masking  0 
[2] Enable RoI decoding  0 
[3] L0 support   1 
[4:7] (Not Used) 
[8] L2a FIFO storage mask   1 
[9] L2r FIFO storage mask  1 
[10] L2 Timeout FIFO storage mask  1 
[11] L1a message mask   1 
[12] Trigger Input Mask Enable   0 
[13:15] (Not Used) 

Control[7:0] 0x3001 R [16] Bunch_counter overflow    - 
[17] Run Active   - 
[18] Busy (receiving sequence) - 
[19] Not Used 
[23:20] CDH version  
 0x2 

Module reset 0x3002 T Reset Module 
RoI_Config1[15:0] 0x3004 RW RoI-Definition. Bit 15:0  
RoI_Config1[1:0] 0x3005 RW RoI Definition. Bit 17:16  
RoI_Config2[15:0] 0x3006 RW RoI Definition. Bit 33:18 
RoI_Config2[1:0] 0x3007 RW RoI Definition. Bit 35:34 
Reset_Counters 0x3008 T Write to this registers will reset the counters in 

the module 
Issue_TestMode 0x300A T Debug: Issues testmode sequence. Note that 

serialB channel input MUST be disabled when 
using this feature.  

L1_Latency[15:0] 0x300C RW [15:12] Uncertainty region +- N. default value 
0x2 (50 ns) 
[11:0] Latency from L0 to L1, default value 
0x30D4 (5.3 us)  

L2_Latency[15:0] 0x300E RW [15:0] Max Latency from BC0 to L2 
L2_Latency[15:0] 0x300F RW [31:16] Min Latency from BC0 to L2 
PrePulse_Latency[7:0] 0x3010 RW  

                                                                 
7
 Legend: W=write, R=read, T= write trigger (not physical registers) 
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RoI_Latency[15:0] 0x3012 RW [15:0] Max Latency from BC0 to RoI msg 
RoI_Latency[15:0] 0x3013 RW [31:16] Min Latency from BC0 to RoI msg 
L1_msg_latency[15:0] 0x3014 RW [15:0] Max Latency from BC0 to L1 msg 
L1_msg_latency[15:0] 0x3015 RW [15:0] Max Latency from BC0 to L1 msg 
Pre_pulse_counter[15:0] 0x3016 RW Number of decoded pre-pulses. 
BCID_Local[11:0] 0x3018 R Number of bunchcrossings at arrival of L1 

trigger. 
L0_counter[15:0] 0x301A R Number of L0 triggers  
L1_counter[15:0] 0x301C R Number of L1 triggers 
L1_msg_counter[15:0] 0x301E R Number of successfully decoded L1 messages 
L2a_counter[15:0] 0x3020 R Number of successfully decoded L2a messages 
L2r_counter[15:0] 0x3022 R Number of successfully decoded L2r messages 
RoI_counter[15:0] 0x3024 R Number of successfully decoded RoI messages 
Bunchcounter[11:0] 0x3026 R Debug: Number of bunchcrossings 
hammingErrorCnt[15:0] 0x302C R [15:0] Number of single bit hamming errors  
hammingErrorCnt[15:0] 0x302D R [31:16] Number of double bit hamming errors 
ErrorCnt[15:0] 0x302E R [15:0] Number of message decoding errors  
ErrorCnt[15:0] 0x302F R [31:16] Number of errors related to sequence 

and timeouts. 
Buffered_events[4:0] 0x3040 R Number of events stored in the FIFO.   
DAQ_Header01[15:0] 0x3042 R Latest received DAQ Header 1 [15:0] 
DAQ_Header01[15:0] 0x3043 R Latest received DAQ Header 1 [31:16] 
DAQ_Header02[15:0] 0x3044 R Latest received DAQ Header 2 [15:0] 
DAQ_Header02[15:0] 0x3045 R Latest received DAQ Header 2 [31:16] 
DAQ_Header03[15:0] 0x3046 R Latest received DAQ Header 3 [15:0] 
DAQ_Header03[15:0] 0x3047 R Latest received DAQ Header 3 [31:16] 
DAQ_Header04[15:0] 0x3048 R Latest received DAQ Header 4 [15:0] 
DAQ_Header04[15:0] 0x3049 R Latest received DAQ Header 4 [31:16] 
DAQ_Header05[15:0] 0x304A R Latest received DAQ Header 5 [15:0] 
DAQ_Header05[15:0] 0x304B R Latest received DAQ Header 5 [31:16] 
DAQ_Header06[15:0] 0x304C R Latest received DAQ Header 6 [15:0] 
DAQ_Header06[15:0] 0x304D R Latest received DAQ Header 6 [31:16] 
DAQ_Header07[15:0] 0x304E R Latest received DAQ Header 7 [15:0] 
DAQ_Header07[15:0] 0x304F R Latest received DAQ Header 7 [31:16] 
Event_info[11:0] 0x3050 R [0] RoI enabled 

[1] Region of Interest announced (=ESR) 
[2] RoI received 
[3] Within region of interest 
[4:7] Calibration/SW trigger type (= RoC) 
[8] Software trigger event 
[9] Calibration trigger event 
[10] Event has L2 Reject trigger 
[11] Event has L2 Accept trigger 

Event_error[15:0] 0x3052 R [0] Serial B Stop Bit Error 
[1] Single Bit Hamming Error Individually Addr. 
[2] Double Bit Hamming Error Individually Addr. 
[3] Single Bit Hamming Error Broadcast. 
[4] Double Bit Hamming Error Broadcast. 
[5] Unknown Message Address Received 
[6] Incomplete L1 Message 
[7] Incomplete L2a Message 
[8] Incomplete RoI Message  
[9] TTCrx Address Error (not X”0003”) 
[10] Spurious L0  
[11] Missing L0 
[12] Spurious L1 
[13] Boundary L1 
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[14] Missing L1 
[15] L1 message arrives outside legal timeslot 

Event_error[11:0] 0x3053 R [16] L1 message missing/timeout 
[17] L2 message arrives outside legal timeslot 
[18] L2 message missing/timeout 
[19] RoI message arrives outside legal timeslot 
[20] RoI message missing/timeout 
[21] Prepulse error (=0; possible future use) 
[22] L1 message content error 
[23] L2 message content error 
[24] RoI message content error 

L1_MessageHeader[11:0] 0x3060 R Debug: Latest received L1 Message 
L1_MessageData1[11:0] 0x3062 R Debug: Latest received L1 Message 
L1_MessageData2[11:0] 0x3064 R Debug: Latest received L1 Message 
L1_MessageData3[11:0] 0x3066 R Debug: Latest received L1 Message 
L1_MessageData4[11:0] 0x3068 R Debug: Latest received L1 Message 
L2aMessageHeader[11:0] 0x306A R Debug: Latest received L2a Message 
L2aMessageData1[11:0] 0x306C R Debug: Latest received L2a Message 
L2aMessageData2[11:0] 0x306E R Debug: Latest received L2a Message 
L2aMessageData3[11:0] 0x3070 R Debug: Latest received L2a Message 
L2aMessageData4[11:0] 0x3072 R Debug: Latest received L2a Message 
L2aMessageData5[11:0] 0x3074 R Debug: Latest received L2a Message 
L2aMessageData6[11:0] 0x3076 R Debug: Latest received L2a Message 
L2aMessageData7[11:0] 0x3078 R Debug: Latest received L2a Message 
L2rMessageHeader[11:0] 0x307A R Debug: Latest received L2r Message 
RoIMessageHeader[11:0] 0x307C R Debug: Latest received RoI Message 
RoIMessageData1[11:0] 0x307E R Debug: Latest received RoI Message 
RoIMessageData2[11:0] 0x3080 R Debug: Latest received RoI Message 
RoIMessageData3[11:0] 0x3082 R Debug: Latest received RoI Message 
FIFO_read_enable 0x3100 T Debug: Triggers a readout pulse to FIFO 
FIFO_DAQHeader[15:0] 0x3102 R Debug: Output of FIFO [15:0] 
FIFO_DAQHeader[15:0] 0x3103 R Debug: Output of FIFO [31:16] 
Table 10-2: List of registers that can be accessed externally. Note that the registers marked debug can be excluded by 

setting the generic include_debug_registers to false, but during the development of HW/FW they come in handy for 

testing and verification. The module address is not given in this table. 

 

10.3 TPC Channel Register Interface 

Ch Address TPC Patch  Ch Address TPC Patch  
0 0X2100 C00 RCU0 108 0x216c A00 RCU0 
1 0X2101 C00 RCU1 109 0x216d A00 RCU1 
2 0X2102 C00 RCU2 110 0x216e A00 RCU2 
3 0X2103 C00 RCU3 111 0x216f A00 RCU3 
4 0X2104 C00 RCU4 112 0x2170 A00 RCU4 
5 0X2105 C00 RCU5 113 0x2171 A00 RCU5 
6 0X2106 C01 RCU0 114 0x2172 A01 RCU0 
7 0X2107 C01 RCU1 115 0x2173 A01 RCU1 
8 0X2108 C01 RCU2 116 0x2174 A01 RCU2 
9 0X2109 C01 RCU3 117 0x2175 A01 RCU3 
10 0X210a C01 RCU4 118 0x2176 A01 RCU4 
11 0x210b C01 RCU5 119 0x2177 A01 RCU5 
12 0x210c C02 RCU0 0 0xC100 A02 RCU0 
13 0x210d C02 RCU1 1 0xC101 A02 RCU1 
14 0x210e C02 RCU2 2 0xC102 A02 RCU2 
15 0x210f C02 RCU3 3 0xC103 A02 RCU3 
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16 0x2110 C02 RCU4 4 0xC104 A02 RCU4 
17 0x2111 C02 RCU5 5 0xC105 A02 RCU5 
18 0x2112 C03 RCU0 6 0xC106 A03 RCU0 
19 0x2113 C03 RCU1 7 0xC107 A03 RCU1 
20 0x2114 C03 RCU2 8 0xC108 A03 RCU2 
21 0x2115 C03 RCU3 9 0xC109 A03 RCU3 
22 0x2116 C03 RCU4 10 0xC10a A03 RCU4 
23 0x2117 C03 RCU5 11 0xC10b A03 RCU5 
24 0x2118 C04 RCU0 12 0xC10c A04 RCU0 
25 0x2119 C04 RCU1 13 0xC10d A04 RCU1 
26 0X211a C04 RCU2 14 0xC10e A04 RCU2 
27 0x211b C04 RCU3 15 0xC10f A04 RCU3 
28 0x211c C04 RCU4 16 0xC110 A04 RCU4 
29 0x211d C04 RCU5 17 0xC111 A04 RCU5 
30 0x211e C05 RCU0 18 0xC112 A05 RCU0 
31 0x211f C05 RCU1 19 0xC113 A05 RCU1 
32 0x2120 C05 RCU2 20 0xC114 A05 RCU2 
33 0x2121 C05 RCU3 21 0xC115 A05 RCU3 
34 0x2122 C05 RCU4 22 0xC116 A05 RCU4 
35 0x2123 C05 RCU5 23 0xC117 A05 RCU5 
36 0x2124 C06 RCU0 24 0xC118 A06 RCU0 
37 0x2125 C06 RCU1 25 0xC119 A06 RCU1 
38 0x2126 C06 RCU2 26 0xC11a A06 RCU2 
39 0x2127 C06 RCU3 27 0xC11b A06 RCU3 
40 0x2128 C06 RCU4 28 0xC11c A06 RCU4 
41 0x2129 C06 RCU5 29 0xC11d A06 RCU5 
42 0X212a C07 RCU0 30 0xC11e A07 RCU0 
43 0x212b C07 RCU1 31 0xC11f A07 RCU1 
44 0x212c C07 RCU2 32 0xC120 A07 RCU2 
45 0x212d C07 RCU3 33 0xC121 A07 RCU3 
46 0x212e C07 RCU4 34 0xC122 A07 RCU4 
47 0x212f C07 RCU5 35 0xC123 A07 RCU5 
48 0x2130 C08 RCU0 36 0xC124 A08 RCU0 
49 0x2131 C08 RCU1 37 0xC125 A08 RCU1 
50 0x2132 C08 RCU2 38 0xC126 A08 RCU2 
51 0x2133 C08 RCU3 39 0xC127 A08 RCU3 
52 0x2134 C08 RCU4 40 0xC128 A08 RCU4 
53 0x2135 C08 RCU5 41 0xC129 A08 RCU5 
54 0x2136 C09 RCU0 42 0xC12a A09 RCU0 
55 0x2137 C09 RCU1 43 0xC12b A09 RCU1 
56 0x2138 C09 RCU2 44 0xC12c A09 RCU2 
57 0x2139 C09 RCU3 45 0xC12d A09 RCU3 
58 0X213a C09 RCU4 46 0xC12e A09 RCU4 
59 0x213b C09 RCU5 47 0xC12f A09 RCU5 
60 0x213c C10 RCU0 48 0xC130 A10 RCU0 
61 0x213d C10 RCU1 49 0xC131 A10 RCU1 
62 0x213e C10 RCU2 50 0xC132 A10 RCU2 
63 0x213f C10 RCU3 51 0xC133 A10 RCU3 
64 0x2140 C10 RCU4 52 0xC134 A10 RCU4 
65 0x2141 C10 RCU5 53 0xC135 A10 RCU5 
66 0x2142 C11 RCU0 54 0xC136 A11 RCU0 
67 0x2143 C11 RCU1 55 0xC137 A11 RCU1 
68 0x2144 C11 RCU2 56 0xC138 A11 RCU2 
69 0x2145 C11 RCU3 57 0xC139 A11 RCU3 
70 0x2146 C11 RCU4 58 0xC13a A11 RCU4 
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71 0x2147 C11 RCU5 59 0xC13b A11 RCU5 
72 0x2148 C12 RCU0 60 0xC13c A12 RCU0 
73 0x2149 C12 RCU1 61 0xC13d A12 RCU1 
74 0X214a C12 RCU2 62 0xC13e A12 RCU2 
75 0x214b C12 RCU3 63 0xC13f A12 RCU3 
76 0x214c C12 RCU4 64 0xC140 A12 RCU4 
77 0x214d C12 RCU5 65 0xC141 A12 RCU5 
78 0x214e C13 RCU0 66 0xC142 A13 RCU0 
79 0x214f C13 RCU1 67 0xC143 A13 RCU1 
80 0x2150 C13 RCU2 68 0xC144 A13 RCU2 
81 0x2151 C13 RCU3 69 0xC145 A13 RCU3 
82 0x2152 C13 RCU4 70 0xC146 A13 RCU4 
83 0x2153 C13 RCU5 71 0xC147 A13 RCU5 
84 0x2154 C14 RCU0 72 0xC148 A14 RCU0 
85 0x2155 C14 RCU1 73 0xC149 A14 RCU1 
86 0x2156 C14 RCU2 74 0xC14a A14 RCU2 
87 0x2157 C14 RCU3 75 0xC14b A14 RCU3 
88 0x2158 C14 RCU4 76 0xC14c A14 RCU4 
89 0x2159 C14 RCU5 77 0xC14d A14 RCU5 
90 0X215a C15 RCU0 78 0xC14e A15 RCU0 
91 0x215b C15 RCU1 79 0xC14f A15 RCU1 
92 0x215c C15 RCU2 80 0xC150 A15 RCU2 
93 0x215d C15 RCU3 81 0xC151 A15 RCU3 
94 0x215e C15 RCU4 82 0xC152 A15 RCU4 
95 0x215f C15 RCU5 83 0xC153 A15 RCU5 
96 0x2160 C16 RCU0 84 0xC154 A16 RCU0 
97 0x2161 C16 RCU1 85 0xC155 A16 RCU1 
98 0x2162 C16 RCU2 86 0xC156 A16 RCU2 
99 0x2163 C16 RCU3 87 0xC157 A16 RCU3 
100 0x2164 C16 RCU4 88 0xC158 A16 RCU4 
101 0x2165 C16 RCU5 89 0xC159 A16 RCU5 
102 0x2166 C17 RCU0 90 0xC15a A17 RCU0 
103 0x2167 C17 RCU1 91 0xC15b A17 RCU1 
104 0x2168 C17 RCU2 92 0xC15c A17 RCU2 
105 0x2169 C17 RCU3 93 0xC15d A17 RCU3 
106 0X216a C17 RCU4 94 0xC15e A17 RCU4 
107 0x216b C17 RCU5 95 0xC15f A17 RCU5 
Table 10-3: List registers for all BusyBox channel numbers in decimal, the address to their registers and which RCU-DRORC 

pair should be connected to this channel. 

 

 


